Finding Binomial Probabilities Using Tables

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Mean & Standard Deviation of a Binomial Random Variable: Formula & Example

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:40 Understanding Binomial…
  • 2:30 Binomial Distributions…
  • 6:58 Lesson Summary
Save Save Save

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Speed Speed

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Cathryn Jackson

Cat has taught a variety of subjects, including communications, mathematics, and technology. Cat has a master's degree in education and is currently working on her Ph.D.

A binomial probability table can look intimidating to use. However, it can make your life a lot easier when trying to figure out binomial probabilities. This lesson will teach you how to read those tables.

Understanding Binomial Probabilities

McKenzi works for a local grocery store. The grocery store is starting a new marketing campaign to promote their cheese sales. First, the grocery store wants to do a little market research. McKenzi is in charge of asking 10 customers each hour if they like eating cheese. McKenzi wonders the probability of getting 8 people to say they like cheese in the first hour, 2 in the second hour, and 4 in the third hour. To find the answer to this question, McKenzi will need to understand binomial probabilities and how to read binomial distribution tables.

A binomial distribution table is a table of commonly used probability distributions created by statisticians. You can find binomial distribution tables right here.

McKenzi will be able to use binomial distribution tables to answer her question because she's conducting a binomial experiment, which is an experiment that contains a fixed number of trials that results in only one of two outcomes: success or failure. For example, a person flipping a coin 10 times to see how many heads appear in the coin flips would be a binomial experiment. McKenzi's work can be described as a binomial experiment, because either the person likes cheese, or they don't. She also has a fixed number of trials: 10 for each hour. In fact, each hour that McKenzi works can be viewed as a separate binomial experiment.

There are some things to keep in mind when understanding binomial experiments. First, the outcomes must be independent. This means that the outcome of one trial cannot have any influence on another. In McKenzi's experiment, we can assume that whether or not one customer said they liked cheese won't affect what the next person reports.

Second, a binomial experiment must only have two possible outcomes. In this case, the two possible outcomes are either the person likes cheese, or they don't.

Third, there are a fixed number of trials in a binomial experiment. For McKenzi's work, she has to ask 10 people each hour. So remember, we can look at each hour as a separate binomial experiment.

Now that you understand binomial experiments, let's look at binomial distributions and how McKenzi's question can be answered using binomial distribution tables.

Binomial Distributions & Tables

Before McKenzi starts work, she wants to figure out the binomial distribution for her experiment. Binomial distribution is the probability of each success in a given binomial experiment. In other words, binomial distribution shows us the probability for each scenario depending on the number of trials in the experiment. You will see two separate probabilities in this lesson. The first probability refers to the possibility of success on a trial. For example, if McKenzi were to flip a coin, then she has a 50% probability of getting heads and a 50% probability of getting tails. If McKenzi wanted to know the probability of successfully getting 5 heads in a row, then we would be working with the second form of probability in this scenario. Let's discuss this further in McKenzi's experiment.

In McKenzi's experiment, she has 10 trials because she will be asking 10 people that hour if they like cheese. She can use a binomial distribution table like this one to determine the probability for each scenario.

Before you can read a binomial distribution table, you will need to understand some of the variables.

In all binomial distribution tables, the x represents the number of successes, the n represents the number of trials, and the P represents the probability of success on an individual trial. This probability is the same as the 50% probability of getting heads on one flip of the coin.

In McKenzi's experiment, x represents how many people like cheese, n represents the 10 people she will ask and P represents the probability that someone will like cheese.

We already know how many trials there are in McKenzi's experiment: 10, so we can input 10 for n. Now, we need to find P and x. First let's look at P, or the probability of success of an individual trial. McKenzi's manager tells her that market research consultants say the average person is 60% likely to eat cheese. Therefore, we can assume that P=.60. Now that we know n and P for our distribution, McKenzi can use the table to answer her questions about probability.

On the top of our table you will see n=10, but this n value will change depending on the number of trials in your experiment. Since McKenzi's experiment will have 10 trials, we located the table for 10 trials.

The first row will have the probability, or what P equals. Locate P=.60 for McKenzi's experiment. In this table, .6 is located on the last row.

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create an account