An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Interspecific Competition, Competitive Exclusion & Niche Differentiation

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:11 Food Chains
  • 2:34 Trophic Levels
  • 3:17 Food Webs
  • 5:19 Energy Flow Through a Food Web
  • 8:22 Lesson Summary
Save Save Save

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Speed Speed Audio mode

Food Chains, Trophic Levels and Energy Flow in an Ecosystem

Lesson Transcript
Instructor: Joshua Anderson
In this lesson, you'll learn about food chains, food webs, and the different roles that organisms play in an ecosystem. You'll also learn about how energy flows through an ecosystem. Updated: 03/24/2020

Food Chains

The Sonoran Desert in the Southwestern United States may seem like a desolate place, but looks can be deceiving, because a wide array of wildlife can be found in this very dry environment. You might wonder how animals can make a living in the desert - after all, what is there for them to eat? Just like in every other ecosystem, all animals must eat other organisms, or, at the very least, secretions of other organisms, to acquire energy. We can follow a sequence of organisms that feed on each other to create a food chain, or a sequence of organisms that feed on each other.

Since a food chain follows the sequence of organisms that feed on each other, it always starts with an organism that gets its energy from an abiotic source, which is usually light from the sun. An organism that gets its energy from an abiotic source is called a producer. Since plants get their energy from sunlight, they are producers; one of the common producers in the Sonoran Desert is the prickly pear cactus.

Many different animals eat the fruit of the prickly pear cactus, including Harris's antelope squirrel. The squirrel is a consumer because it gets its energy from other organisms. In this case, the squirrel gets its energy from the fruit of the prickly pear cactus.

In turn, the squirrel can be eaten by another consumer, the diamondback rattlesnake, and the rattlesnake can then be eaten by a roadrunner… and no, that is not a mistake. In the Sonoran Desert, roadrunners are deadly predators that will commonly pick up rattlesnakes by the tail and smash their head repeatedly onto the ground in a whip-like fashion. Once the rattlesnake is dead, the roadrunner will swallow it whole. In cases where the rattlesnake is too large to swallow all at once, the roadrunner will partially swallow the snake, with its tail still hanging out of its beak. As the first parts of the snake are digested, the roadrunner will then continue to swallow the rest of the snake.

The roadrunner itself can also be eaten by yet another predator: the Red-tailed hawk. You thought I was going to say a coyote, didn't you? Well, it turns out that, much like in the cartoon, adult roadrunners are just too fast for a coyote to catch, although coyotes will eat roadrunner eggs and chicks. In any case, the Red-tailed hawk is one of the few animals able to catch an adult roadrunner and make a meal of it, which puts the hawk at the top of our food chain.

Trophic Levels

Trophic levels are the levels of a food chain where organisms obtain their energy
Trophic levels of a food chain

So let's take a closer look at our food chain, which can be divided up into different trophic levels, or the levels of a food chain where organisms obtain their energy. The food chain starts with a producer, the prickly pear cactus, which obtains its energy from sunlight. The prickly pear is eaten by Harris's antelope squirrel, which, because it is the first consumer in the food chain, is called the primary consumer. The squirrel is eaten by the diamondback rattlesnake, which is called the secondary consumer. The rattlesnake is eaten by the roadrunner, which is the third consumer in the chain and therefore called the tertiary consumer. And finally, the fourth consumer in the chain, the Red-tailed hawk, is the quaternary consumer.

Now although this food chain is a possible sequence of events that could happen in the Sonoran Desert, each of the animals in the food chain is usually capable of eating other food items as well. Each of them could also be eaten by other animals in the desert, which means that there are a seemingly limitless number of other possible food chains.

So, to more accurately describe energy flow through an ecosystem, ecologists can construct a food web, which is a combination of food chains that are interconnected to create a network of feeding relationships. Just like a food chain, energy enters the food web at the trophic level of the producers, which can also be called autotrophs. In the desert, autotrophs are often some type of cactus, grass, or shrub.

Plant-eating animals, or herbivores, such as grasshoppers, butterflies, jackrabbits, and desert tortoises, feed at the trophic level of the primary consumer.

Carnivores, or animals that only eat other animals, like scorpions, snakes, spiders, hawks, owls, and mountain lions, can feed at the trophic levels of the secondary, tertiary, or quaternary consumer, or even higher if a particular food chain is long enough.

And then there are some animals that eat both plants and animals, called omnivores. Omnivores, such as antelope squirrels, roadrunners, coyotes, and ringtails, can potentially feed at any of the consumer trophic levels.

There's just one more trophic level to talk about, and that's the level of the detritivore, which is an organism that feeds on waste products or dead organic material. Examples of detritivores include vultures, fungi, and bacteria. Since detritivores can take dead organic material and bring the stored energy back into the food web, they can be thought of as the recyclers of the ecosystem. After all, if there's energy just lying around, some organism will fill the niche and make use of this energy, and that's exactly what detritivores do.

Energy Flow Through a Food Web

Now, let's look at how much energy actually flows through the food web. We know that plants and animals use energy in their daily activities, and we also know that plants and animals store energy within their tissues.

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it now
Create an account to start this course today
Used by over 30 million students worldwide
Create an account