# Graphing Absolute Value Equations: Dilations & Reflections Video

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: What is an Inequality?

### You're on a roll. Keep up the good work!

Replay
Your next lesson will play in 10 seconds
• 1:09 Dilations
• 2:20 Reflections
• 4:04 Absolute Value Equations
• 5:23 Summary
Save Save

Want to watch this again later?

Timeline
Autoplay
Autoplay
Speed Speed

#### Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Erin Monagan

Erin has been writing and editing for several years and has a master's degree in fiction writing.

Although a basic absolute value graph isn't complicated, transformations can make them sufficiently confusing! In this lesson, you'll practice different transformations of absolute value graphs.

## Translation

We'll start this lesson by recalling that absolute value graphs look like the absolute coolest guitar there is, the Flying V. Also, we can slide these graphs all around by doing the transformation that is called a translation.

For example, by taking our parent graph y=|x| and changing it to y=|x-2|+3, the V gets translated two to the right and up three so that we end up with our vertex at the coordinates (2, 3). Also, remember that the left and right shift does the opposite of what you would expect. So, a -2 on the inside the absolute value actually shifts it to the right because I need to put in a +2 for x to turn the absolute value part into 0, which is where my vertex is going to be.

## Absolute Value Graphs with Dilations

This is not the only kind of transformation that we often see with absolute value graphs. The second most common one is called a dilation (or a stretch or a shrink). In absolute value graphs, a dilation makes the V either wider or thinner. We accomplish this by putting a value in front of the absolute value (for example, y=2|x| or y=1/3|x|). Just like the m in y=mx+b, this value tells us the new slope of the lines in our V. Meaning that y=2|x| will start at the origin (because there is nothing being added or subtracted on the inside or the outside), but then go up two and over one each step of the way. This means it's going to be a steeper V than the normal one. If we did y=(1/3)|x|, we'd only go up one and over three each step of the way (and in both directions). That means this V is going to be wider than all the other ones we've looked at.

## Absolute Value Graphs with Reflections

So, then the question becomes - what happens when we put a negative number in front of the absolute value (say, y=-4|x|)? Well, since the -4 is directly in front of the absolute value, which means multiplication. And, because the absolute value will always be positive no matter what we substitute in for x, (we don't multiply the positive by a negative, because it gives us a negative number) all our y values are going to be negative. So, now instead of our entire graph being above the x-axis, it will be completely below it. We call this kind of transformation a reflection because the graph of y=|x| gets reflected (like a mirror) over the x-axis to end up with y=-|x|.

To unlock this lesson you must be a Study.com Member.

### Register to view this lesson

Are you a student or a teacher?

#### See for yourself why 30 million people use Study.com

##### Become a Study.com member and start learning now.
Back
What teachers are saying about Study.com

### Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.