Hardy-Weinberg Equilibrium III: Evolutionary Agents

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Hardy-Weinberg Equilibrium II: The Equation

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:06 Evolutinary Agents
  • 1:22 Non-Random Mating
  • 6:19 Natural Selection
  • 9:16 Genetic Drift
  • 11:42 Lesson Summary
Save Save Save

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Speed Speed Audio mode

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Greg Chin
In this lesson, you'll learn how the Hardy-Weinberg equation relates to different evolutionary agents and population changes. Discover how the equation may be used to discover populations that are not in equilibrium.

Evolutionary Agents

So, we've seen how the Hardy-Weinberg equilibrium equation can be used to test the evolutionary status of a population. An evolutionary agent is any force that alters the genetic structure of a population. If no evolutionary agents are affecting a population, the population is in equilibrium because allelic and genotypic frequency is not changing. By using the Hardy-Weinberg equilibrium equation to analyze the allelic and genotypic frequencies within a population of flying hamsters, we were able to determine that the coat color trait is in equilibrium.

However, the real power of the Hardy-Weinberg equation is identifying populations that are not in equilibrium. When a population fails to comply with the Hardy-Weinberg equilibrium predictions, we can try to infer what evolutionary agent (or agents) is affecting the population. By generating an educated guess, or hypothesis, we can provide the basis for further experimentation to explore the evolution of that population.

Well, let's go out into the wild and start examining flying hamster populations.

Non-Random Mating

Let's start with the population where we found the different tail colors.

You know, I'm thinking it'd probably be a good idea to check out our lab notebook to refresh our memory about this trait. All right, according to our notes, the tail color trait was an example of incomplete dominance, meaning the heterozygote exhibits a phenotype that is partway between the two homozygotes. We used B to represent the blue-tail allele and Y to represent the yellow-tail allele. Hamsters with a BB genotype have blue tails, those with a BY genotype have green ones, and those with a YY genotype have yellow ones.

We could make a hypothesis that the population is in Hardy-Weinberg equilibrium. That will allow us to use the Hardy-Weinberg equation to determine whether that is true. If the population satisfies all of the requirements that we've discussed previously, our observed data should match the numbers predicted by the Hardy-Weinberg equilibrium equation.

After walking around the area and counting hamsters, we determine that the population contains 526 blue-tailed, 42 green-tailed, and 432 yellow-tailed hamsters.

Since each blue-tailed hamster contributes two B alleles and each green-tailed hamster contributes one B allele, there are 1,094 B alleles out of a gene pool of 2,000 alleles. That means that p = 0.547.

Since we determined earlier that p + q = 1, we can, therefore, say that q = 0.453.

Let's insert these values into our handy dandy Hardy-Weinberg equilibrium equation. We want to know the frequency at which each phenotypic class should occur in the population. Each value in this equation represents one of those classes; therefore, if we solve for p^2 + 2pq + q^2, we can determine those frequencies. And since we're dealing with a population of 1,000 hamsters, we can predict how many of each type to expect if the population is in equilibrium. The equation predicts we should see 299 blue-tailed, 496 green-tailed, and 205 yellow-tailed hamsters. Since the number of hamsters in each category that we observed is different than what we expected, an evolutionary agent may be affecting the population.

But some variation beyond the predicted values has to be expected. For instance, just because I don't get exactly a 50/50 split when flipping a coin doesn't mean that there isn't a one in two chance of getting heads or tails. The question is 'how can I tell the difference between random variation between data sets and data sets that are significantly different?' To answer this question, we need to use statistics.

The chi-square test is a statistical test commonly used to determine if observed values are significantly different from expected values. If we evaluate our data with this test, we find that the difference is significant. That means we can reject our hypothesis that the population is in Hardy-Weinberg equilibrium and predict that one or more evolutionary agents are altering the population.

By conducting further studies, we may be able to make a hypothesis to identify the major evolutionary agents affecting the population.

For instance, while we were doing our counts, I noticed that the blue-tailed hamsters seem to prefer to mate with other blue-tailed hamsters and yellow-tailed hamsters tend to mate with other yellow-tailed ones. This observation may be an indication that hamsters in the population do not mate randomly. Non-random mating alters genotypic frequency, which in turn alters the phenotypic composition of a population.

Okay, great. That could make for a really interesting research project. Although we can't exclude other possibilities simply based on this observation, we can perform some controlled experiments to provide more evidence to support our hypothesis. But let's do that later. For now, let's continue our field research.

Natural Selection

Let's shift our studies to the fire-breathing trait. If we refer to our lab notebook again, we see that the fire-breathing trait is a recessive autosomal trait. We represented the non-fire-breathing allele with 'F' and the fire-breathing allele with 'f.'

So let's count the hamsters in the population; however, this time we'll need to perform a genotyping test to distinguish FF from Ff individuals. Those efforts yield the following results: 119 FF, 265 Ff, and 616 fire-breathing hamsters (ff).

As before, we can use this data to calculate the allelic frequency. 119 FF hamsters translate to 238 F alleles and 265 Ff hamsters contribute 265 F alleles to the gene pool. That means that out of a 2,000-allele gene pool, 503 are F. We can simplify this information as p = 0.252. And, plugging that p value into our allelic equation, p + q = 1, we find that q = 0.748.

Now, if we plug those values into the Hardy-Weinberg equilibrium equation, we predict we should see 63 FF, 377 Ff, and 560 fire-breathing hamsters.

Natural selection provides the fire-breathing hamsters with the opportunity to have more offspring.
Natural Selection

To unlock this lesson you must be a Study.com Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back
What teachers are saying about Study.com
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create an account