Copyright

How DNA Polymerase and RNA Primase Initiate DNA Replication

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: DNA Replication: The Leading Strand and DNA Polymerase Activities

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
 Replay
Your next lesson will play in 10 seconds
  • 0:05 DNA Replication and…
  • 1:28 DNA Polymerase
  • 3:18 RNA Primase and the RNA Primer
  • 5:38 Enzyme Review
  • 6:55 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Login or Sign up

Timeline
Autoplay
Autoplay

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: April Koch

April teaches high school science and holds a master's degree in education.

How do enzymes assist in starting DNA replication? In this lesson, we explore the work of a contributing enzyme, DNA polymerase, and learn how the RNA primer is made by the action of RNA primase.

DNA Replication and the Zipper Model

DNA helicase acts like a zipper to separate the DNA double helix.
Zipper Model

So far we've been talking about DNA replication by using a zipper as an example. It really is one of the closest things we have to help us understand how DNA replication works. We talked about how the DNA molecule splits apart during semi-conservative replication and how the enzyme helicase acts just like a zipper slider to separate the DNA right down the middle. Helicase breaks the hydrogen bonds just like the wedge in the slider breaks apart the teeth on a zipper.

But we didn't get to talk about how the daughter strands are put together on top of the parent template. So, in this lesson we're going to continue with the steps of DNA replication, and we'll keep thinking of it being similar to the form of a zipper.

Imagine if your best friend gave you one side of a zipper tape, and he asked you to complete the zipper by attaching the other side. But instead of giving you an entire zipper tape, what if he only gave you a bunch of little teeth that weren't connected to each other? You would have a lot of work to do! You'd have to slide those little metal teeth in between the grooves on the zipper tape one at a time until you completed the opposite half of the zipper.

That's sort of how it is with DNA replication. Once the parent DNA has been split into a replication fork, a daughter strand has to be built onto the parent strand one nucleotide at a time. The 'hands' that work to grab those little nucleotides and arrange them into their spaces are actually a special type of enzyme. The enzyme is called DNA polymerase.

A daughter strand is built onto the parent strand one nucleotide at a time.
One Nucleotide at a Time

DNA Polymerase

DNA polymerase sounds like a really long word, but if you break it down, it actually makes a lot of sense, and it's easy to remember. The suffix -ase simply tells you that this molecule is an enzyme, or a protein that helps with chemical reactions. The word root 'polymer' refers to any large molecule that is made of many smaller parts, or monomers. And you already know that DNA stands for deoxyribonucleic acid. So, if you add up all of the parts of the word, then you can see that DNA polymerase is an enzyme that helps put together the small parts of the DNA molecule. Those small parts, of course, are the nucleotides.

DNA polymerase is like a vehicle that buses in the individual nucleotides. It builds the daughter strand of DNA according to the template set up by the parental strand. For every cytosine, it lays down a guanine, and for every guanine, it lays down a cytosine. For every thymine, it lays down an adenine, and for every adenine, it lays down a thymine. Each daughter nucleotide is attached, one at a time, by DNA polymerase.

Now, most enzymes, especially DNA polymerase, are a bit picky when it comes to doing their job. They want all the conditions to be just right, and they'll only help with a chemical reaction when they have everything go their way. The job of DNA polymerase is to add daughter nucleotides onto the exposed bases of a parent strand.

But since it's so picky, it won't just start adding nucleotides on its own. It has to attach them onto the end of a newly synthesized daughter strand. Now how is that supposed to work? It's sort of like if I said, 'I'm not going to go grocery shopping until somebody buys me some groceries first.' DNA polymerase basically refuses to do its job until part of its job is already done!

RNA Primase and the RNA Primer

Wouldn't it be nice if we had another helper to solve this problem? Well, fortunately, we do, and it's yet another enzyme. It's called RNA primase. The job of RNA primase is to make, or synthesize, a primer for replication to start. First, it waits for DNA helicase to open a replication fork. Then, it swings in behind helicase to lay down a primer.

RNA primase follows DNA helicase and lays down a primer to prepare for replication.
RNA Primase

What's a primer? Well, a primer is a short polynucleotide segment that primes, or prepares, the way for DNA replication by helping DNA polymerase to get started in doing its job. The primer is made out of RNA, so it's called an RNA primer.

Let's go through that again because it gets a little confusing here. The RNA primer is a short strand of RNA that initiates DNA replication. So, the primer that initiates DNA replication isn't even made out of DNA! Don't get confused about the difference between the RNA primer and the RNA primase. Again, the enzyme that puts together the RNA primer is called RNA primase. Just remember that the one with -ase is the one that's the enzyme.

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?
I am a teacher

Unlock Your Education

See for yourself why 30 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back

Earning College Credit

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it free for 5 days!
Create An Account
Support