Back To Course

Math 101: College Algebra12 chapters | 95 lessons | 11 flashcard sets

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Try it risk-freeWhat teachers are saying about Study.com

Already registered? Login here for access

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Luke Winspur*

Luke has taught high school algebra and geometry, college calculus, and has a master's degree in education.

Function composition is the process of putting two or more functions together. This video lesson will explain how this process works and also show you how to evaluate functions that have been composed.

It's really easy for mathematicians to make things seem much harder than they actually are. This often comes down to either confusing vocabulary or confusing notation. While these words or symbols will always have a purpose and will end up making life easier, when you're first learning them it can be hard to keep it all straight.

The topic that this lesson is on, **function composition**, is one of those topics. It can seem complicated at first, so let's start small and ease you into it.

We'll begin by reviewing what function notation is.

Basically, it's just another way of writing an equation. Instead of saying *y* = 4*x* - 1, we can say *f*(*x*) = 4*x* - 1. This notation now gives this function a name, *f*, and allows us to substitute anything we want into it.

Instead of *f*(*x*), what if it was *f*(*w*)? That means *f*(*w*) is just 4*w* - 1.

We don't just have to use symbols, either. How about *f*(6)? Now we just put a 6 in that spot: 4(6) - 1 = 23.

We could even use random shapes if we want! How about *f*(** :)**)? I just plug that smiley face right in, which means

Let's up the difficulty a little bit. Instead of substituting in a single term, what if we tried an expression with multiple terms? Maybe *f*(-2*m*+3)? Just because it's a bigger expression doesn't mean we do anything different. Where there used to be an *x* (or a smiley, or a 6, or a *w*), now I put -2*m* + 3. That gives us this: 4(-2*m* + 3) - 1, which we can then simplify with the distributive property and combining like terms to end up with our answer: -8*m* + 11.

So, as you can see, we can substitute any old thing into a function. So, why not another function? That's exactly what a **composition of functions** is - we take one function and plug it into another one. If we defined another function, let's say *g*(*x*) to be 3*x*2, we can then evaluate *f*(*g*(*x*)) by doing exactly what we have been doing for the last few minutes and just plug one function into another!

We start with the outside function, *f*: 4 times something - 1, but everywhere that we would normally have put an *x*, we now substitute in the function *g*(*x*). So instead of 4*x* - 1, or 4*w*- 1, or 4 *:)* - 1, we have 4(*g*(*x*)) - 1. But since we know that *g*(*x*) is just 3*x*2, we can substitute that in as well, which makes *f*(*g*(*x*)) equal to 4(3*x*2) - 1. Simplifying again gives us our final answer as 12*x*2 - 1.

And that's it! But composing functions can be difficult because seeing all those letters - *f* and *g* and *x* - can be daunting. Even when you get that part, it can be easy to do the problem backwards and substitute the functions into each other the wrong way. So, let's look at an example or two, and see if we can address those two common mistakes and prevent them from happening to you.

Let's set up some new functions - maybe *r*(*x*) = -*x* + 1 and *s*(*x*) = 2*x* + 5 - and run through the different ways we could compose them.

How about *r*(*s*(*x*))? Well, *r* is the outside function, so we start with that: negative something plus 1. But instead of an *x*, we're substituting in *s*(*x*). That turns what we have, -*x* + 1, into -(2*x* + 5) + 1. Again, distributing and simplifying gives us *r*(*s*(*x*)) = -2*x*- 4.

How about the other way: *s*(*r*(*x*))? This time the outside function is *s*, which means we'll start with 2*x* + 5, but then substitute the *r* function where the *x* used to be. That gives us 2(-*x* + 1) + 5, and our simplified answer is -2*x* + 7.

Notice that we get different answers when we compose the functions in different directions. This means that you've got to be careful to not do them in the wrong way. I limit my mistakes by always starting by writing down the outside function, and only then do I think about the inside one.

There are a few other ways to make these problems slightly more complex. One of those is to compose a function with itself. Maybe *r*(*r*(*x*)): *r* is the outside function, so we start with -*x *+ 1, but then *r* is the inside function as well, so where we saw the *x*, we put another -*x* + 1. That gives us this: -(-*x* + 1) + 1, which simplifies down to just plain *x*.

We can also evaluate a composition of functions at a specific value - maybe like *s*(*s*(3)). We start with the *s* function, 2*x* + 5, substitute in another *s* function, 2(2*x* + 5) + 5, and then substitute a 3 into that (where the *x* used to be), giving us 2(2(3) + 5) + 5. Now, instead of just simplifying, we multiply and add it out. 2 times 3 is 6 plus 5 is 11 times 2 is 22 plus 5 is 27. So, *s*(*s*(3)) is just 27!

Hopefully, this has helped to remove some of the confusing nature of compositions of functions, and show it's simply another way of plugging things into equations. Let's quickly review the highlights.

We can substitute anything we want into a function - variables, shapes, numbers and even other functions!

That's what it means to compose functions - plugging one function into another.

When doing so, begin with the outside function and work your way inside by changing the *x* into whatever new function you are asked to substitute in.

When evaluating a composition of functions at a specific numeric value, do the same process, but then plug that number in where the *x* used to be.

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackWhat teachers are saying about Study.com

Already registered? Login here for access

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
5 in chapter 7 of the course:

Back To Course

Math 101: College Algebra12 chapters | 95 lessons | 11 flashcard sets

- Functions: Identification, Notation & Practice Problems 9:24
- Transformations: How to Shift Graphs on a Plane 7:12
- What Is Domain and Range in a Function? 8:32
- How to Add, Subtract, Multiply and Divide Functions 6:43
- How to Compose Functions 6:52
- Applying Function Operations Practice Problems 5:17
- Go to Functions

- Computer Science 109: Introduction to Programming
- Introduction to HTML & CSS
- Introduction to JavaScript
- Computer Science 332: Cybersecurity Policies and Management
- Introduction to SQL
- TExES Chemistry: Equipment, Safety & Measurements
- MTLE Life Science: Using Statistics
- Important Events in the US (1954-1980)
- Martin Luther & The Protestant Reformation in Europe
- Early Civilizations & The Ancient Near East
- CEOE Test Cost
- PHR Exam Registration Information
- Claiming a Tax Deduction for Your Study.com Teacher Edition
- What is the PHR Exam?
- Anti-Bullying Survey Finds Teachers Lack the Support They Need
- What is the ASCP Exam?
- ASCPI vs ASCP

- Time Series Analysis & Its Applications
- Diazonium Salts: Preparation & Chemical Reactions
- Syn & Anti Addition in Stereochemistry: Mechanism, Reactions & Examples
- Osteoporosis vs. Osteomalacia
- Grep & Grepl Functions in R: Definition & Purpose
- Advanced Database Security: Cascading, Inference & Statistical Databases
- Animal Habitat Project Ideas
- Quiz & Worksheet - Asymmetric Carbons
- Quiz & Worksheet - How to Draw Lines & Shapes in Java
- Quiz & Worksheet - Percents & Percent Formula
- Quiz & Worksheet - Cumulative Distribution Function Calculation
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies
- Common Core ELA Standards | A Guide to Common Core ELA
- Noun Worksheets

- Sociology 101: Intro to Sociology
- Remedial 12th Grade English
- Quantitative Analysis: Skills Development & Training
- Criminal Justice 102: Introduction to Law Enforcement
- Strategic Management in Business
- Genetic Engineering Basics - Middle School Life Science: Homeschool Curriculum
- Metamorphic Rocks - A Deeper Look: Homework Help
- Quiz & Worksheet - Maxwell's Equations
- Quiz & Worksheet - Time Management for ACT Math
- Quiz & Worksheet - GRE Argument Essay Prompts
- Quiz & Worksheet - Images in PowerPoint
- Quiz & Worksheet - Practice with Scientific Notation

- Transforming Factoring Into A Division Problem
- Enthalpy of Solutions
- Essay Writing Prompts
- How Does Tuition Reimbursement Work?
- Holocaust Lesson Plan
- How to Pass the Series 7 Exam
- How to Study for a Placement Test for College
- Best Way to Learn Spanish
- WIDA Can Do Descriptors for Grades 3-5
- USMLE Step 1 Preparation
- 504 Plans in Michigan
- CSET Math Requirements

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject