Copyright

How to Graph an Absolute Value and Do Transformations Video

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Graphing Absolute Value Equations: Dilations & Reflections

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
 Replay
Your next lesson will play in 10 seconds
  • 0:12 Standard Graphs and…
  • 2:28 Parts of an Absolute…
  • 3:47 Translating Horizontally
  • 5:16 Translating Vertically
  • 6:31 Graphing a Standard…
  • 7:28 Lesson Summary
Save Save Save

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Timeline
Autoplay
Autoplay
Speed Speed

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Eric Garneau
Absolute value graphs normally look like the letter 'V', but transformations can change that 'V' in a number of different ways. As well as teaching you how to graph absolute values, this video will focus on a specific group of transformations called translations. Learn all about what that means here!

Standard Graphs and Absolute Value Graphs

Example of a standard graph
Standard Graph Example

When you're learning something new, it can often help to first compare the new idea with one that you already know. By turning something that looks completely new and different into something that's only a little twist on a concept you already know, there becomes way less stuff to remember and it makes it way easier to learn. So before we jump straight into graphing y=|x|, let's first take a look at a graph we already know, y=x.

If we wanted to practice our slope-intercept form skills, y=x would basically be y=1x+0, which means the graph begins at 0 and goes up one, over one because that is our slope, and we get a punch of points that are in a row to give us our line. We could also easily just make a table of values where all the numbers are exactly the same in each row for x and y and we would put a bunch of points on our graph and end up with the exact same line.

Parts of an Absolute Value Graph

So now that we have y=x, lets start to think about how y=|x| is any different. Well, we know that absolute values don't change positive numbers, they just stay positive. That means that as long as we're substituting in positive x values (the right hand part of the graph), the absolute value doesn't do anything, and y=|x| is basically the same as y=x, so this right-hand part of the graph isn't going to be changed. But the absolute value does turn negative numbers back into positive ones. So instead of putting in -1 and getting out -1, we put in -1 and get out +1. -2 turns into +2, -3 turns into +3 and so on. So all of the graph of y=x that was under the x-axis now gets reflected back above the x-axis, almost as if there were a mirror right on the x-axis that doesn't allow the line to go below it, and what we end up with is a graph that looks like the letter V. The bottom of the V is at the origin, (0,0) and is called the vertex of the absolute value graph.

Adding a number on the inside of the absolute value requires shifting the graph to the left
translating horizontally

All absolute value graphs more or less look like this, the letter V. As a side-note, because I'm a music fan, I remember this by telling myself that the absolute coolest guitar is the Gibson Flying V. Maybe you can come up with a different analogy to help you remember, but that's what works for me. Anyway, all these graphs look like Vs, except we can mess around with them to shift them, or flip them, or make them fatter or skinnier. All these different things we can do are called transformations.

Translating Horizontally and Vertically

We'll get to some of these other transformations in a later lesson, but in this lesson we're going to focus on two of the most common transformations you see on absolute value graphs, and those are the shift up/down and left/right. Any transformation that just moves the graph to a new place, but doesn't actually change the size or shape of it is called a translation.

The shift left/right is accomplished by adding or subtracting to the x within the absolute value. Take the example y=|x-3|. The vertex, or the bottom of the V, is the lowest point of the absolute value, and the way we get the lowest point is have the absolute value be 0, because it can't ever be negative, so the lowest it's going to get is at zero. So before the vertex was at (0,0), but now the only way I can make the absolute value 0 is by substituting in x=3. Then I do 3-3 and I get 0, and so my vertex has now been shifted over to the point (3,0), which means my whole V, my whole graph gets shifted over there, so we end up with the following graph.

Subtracting on the outside of the absolute value moves the entire graph downward
Vertically Translating Graph

To unlock this lesson you must be a Study.com Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back
What teachers are saying about Study.com
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create an account
Support