Back To Course

Algebra II Textbook26 chapters | 256 lessons

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Try it risk-freeWhat teachers are saying about Study.com

Already registered? Login here for access

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Yuanxin (Amy) Yang Alcocer*

Amy has a master's degree in secondary education and has taught math at a public charter high school.

Watch this video lesson to learn what kinds of matrix operations you can take to find the inverse of a matrix. Also learn why matrix inverses are useful.

In this video lesson, we will talk about inverse matrices, but before we can introduce inverse matrices, we need to know about the identity matrix. The **identity matrix** is the square matrix that has ones on its diagonal and zeros everywhere else. Think of the identity matrix as the number 1 in the matrix world. These are all examples of identity matrices:

Do you see how each of these identity matrices are all square, meaning that they have the same number of rows and columns? Also, all the numbers are 0 except the numbers making up the diagonal, which are all 1s. The diagonal is the line that starts at the upper left of the matrix and ends at the bottom right.

These are called identity matrices because matrices that are multiplied by their matching sized identity matrix will produce the original matrix. We label an identity matrix with a capital I. So, matrix A multiplied by its identity matrix I will equal matrix A.

Now that we've covered the identity matrix, we can now talk about the inverse matrix. We label inverse matrices with a superscript of -1. So the **inverse matrix** is defined as the inverse matrix that meets the criteria of A * A sup -1 = I, where A stands for a matrix A, A sup -1 stands for the inverse of matrix A, and I stands for the identity matrix.

Yes, if we multiply a matrix by its inverse, then we will get the identity matrix as our answer. This is just like when we multiply a whole number by its inverse, we get the number 1. For example, 1/9 is the inverse of 9. When we multiply them together, we get 1. We can also write 1/9 as 9 sup -1.

Inverse matrices are important in the matrix world because we can't divide in the matrix world. But by using an inverse matrix, we are essentially dividing. To link this to the real world, think of the the inverse of the number 9, 1/9. Aren't we dividing by 9?

One other important thing to note about inverse matrices is that not all matrices will have an inverse matrix. This is just the nature of the matrix world. Just like we can't divide matrices, we can't always find an inverse matrix.

To find the inverse of a particular matrix, we are going to write our matrix and its matching sized identity matrix right next to each other in one big matrix. [A | I]. Then, we are going to use matrix operations to change the first matrix into the identity matrix. What used to be the identity matrix on the right side will now be the inverse matrix. [I | A sup -1]. It is like mathematical magic! It just works! Giving a proof of this method, though, is beyond the scope of this lesson. Let's see how this is done with an example, then.

We will try to find the inverse matrix of this matrix:

So we first write this matrix next to its matching sized identity matrix.

We get one big matrix.

Now we can use matrix operations to turn the first half of this matrix into an identity matrix. What we want to accomplish is to turn all the numbers not on the diagonal to zeros and all the numbers on the diagonal to ones. Your matrix operations may be in a different order than mine, but the end result will always be the same if done correctly.

What I'm going to do is first add the second row to the third row to get a new third row. I get 0, 0, 1, 0, 1, 1. Now I'm going to multiply this new third row by -3 and add it to the top row to get a new top row. Multiplying the third row by -3, I get 0, 0, -3, 0, -3, -3. Adding this to the top row, I get 1, 0, 0, 1, -3, -3 for my new top row. My last step to turn the left side of this matrix into an identity matrix is to divide the second row by 2. Doing this, I get 0, 1, 0, 0, 0.5, 0 for my new second row. Now that I've turned the left side of the matrix into an identity matrix, the right side gives my inverse matrix. My inverse matrix is this one.

And I'm done. I have found my inverse matrix.

Let's review what we've learned now. We've learned that the **identity matrix** is the square matrix that has ones on its diagonal and zeros everywhere else, and an **inverse matrix** is defined as the inverse matrix that meets the criteria of A * A sup -1 = I, where A stands for a matrix A, A sup -1 stands for the inverse of matrix A, and I stands for the identity matrix. We can liken our identity matrix as the number 1 of the matrix world. Just like how anything multiplied by 1 is itself, so it is with the identity matrix. A matrix multiplied by its matching identity matrix is itself.

To find the inverse of a matrix we set up a big matrix by combining our matrix with its identity matrix. We write our matrix on the left and the identity matrix on the right. We perform matrix operations to turn the left side into the identity matrix. The resulting right side will be our inverse matrix. Inverse matrices are important to learn about because they act as division in the matrix world. By using an inverse matrix, we can solve equations that involve matrices.

Use the knowledge you develop while studying this lesson to:

- Define identity matrix and provide examples
- Characterize the inverse matrix
- Highlight the steps necessary to find the inverse of a matrix with matrix operations

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackWhat teachers are saying about Study.com

Already registered? Login here for access

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
5 in chapter 10 of the course:

Back To Course

Algebra II Textbook26 chapters | 256 lessons

- What is a Matrix? 5:39
- How to Write an Augmented Matrix for a Linear System 4:21
- How to Perform Matrix Row Operations 5:08
- Matrix Notation, Equal Matrices & Math Operations with Matrices 6:52
- How to Solve Inverse Matrices 6:29
- How to Solve Linear Systems Using Gauss-Jordan Elimination 5:00
- Inconsistent and Dependent Systems: Using Gaussian Elimination 6:43
- Multiplicative Inverses of Matrices and Matrix Equations 4:31
- How to Take a Determinant of a Matrix 7:02
- Solving Systems of Linear Equations in Two Variables Using Determinants 4:54
- Solving Systems of Linear Equations in Three Variables Using Determinants 7:41
- Using Cramer's Rule with Inconsistent and Dependent Systems 4:05
- How to Evaluate Higher-Order Determinants in Algebra 7:59
- Go to Algebra II: Matrices and Determinants

- Computer Science 109: Introduction to Programming
- Introduction to HTML & CSS
- Introduction to JavaScript
- Computer Science 332: Cybersecurity Policies and Management
- Introduction to SQL
- Early Civilizations & The Ancient Near East
- Fundamental Overview of World War I
- The Virginia Dynasty & Jacksonian America
- 1920's America and the Great Depression
- Building the United States After the American Revolution
- CEOE Test Cost
- PHR Exam Registration Information
- Claiming a Tax Deduction for Your Study.com Teacher Edition
- What is the PHR Exam?
- Anti-Bullying Survey Finds Teachers Lack the Support They Need
- What is the ASCP Exam?
- ASCPI vs ASCP

- Subtraction in Java: Method, Code & Examples
- Hydrogen Chloride vs. Hydrochloric Acid
- Extraction of Aluminum, Copper, Zinc & Iron
- Iroquois Culture, Traditions & Facts
- Noun Clauses Lesson Plan
- Adverb of Manner Lesson Plan
- Timeline Project Ideas for High School
- Quiz & Worksheet - Multi-Dimensional Arrays in C
- Quiz & Worksheet - What is a Diastereoisomer?
- Quiz & Worksheet - Mauryan Empire Art & Culture
- Quiz & Worksheet - What is a Convergent Sequence?
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies
- Guided Reading Lesson Plans
- Special Education in Schools | History & Law

- AP Environmental Science: Homeschool Curriculum
- Political Science for Teachers: Professional Development
- FTCE Social Science 6-12 (037): Practice & Study Guide
- ORELA Middle Grades Social Science: Practice & Study Guide
- College Physics Textbook
- NYSTCE CQST: Multiplication & Division
- Resources for Learning Science
- Quiz & Worksheet - History of & Pilgrimage to Mecca
- Quiz & Worksheet - What Are Instincts?
- Quiz & Worksheet - Theory of Evolutionary Psychology
- Quiz & Worksheet - Howard Gardner's Life & Work
- Quiz & Worksheet - Tumors of the Nervous System

- Subtraction Equations with Two-Digit Integers
- Analyzing the Fictional Portrayal of a Time, Place or Character
- Creative Writing Prompts for Kids
- Writing Center Resources
- 1st Grade Reading List
- Is the TABE Test Hard?
- Math Project Rubrics
- Preschool Word Walls
- Is There Too Much Technology in the Classroom?
- Engineering Degrees 101
- What is a Digital Badge?
- 5th Grade Common Core Math Standards

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject