# How to Solve Visualizing Geometry Problems

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: How to Calculate the Volumes of Basic Shapes

### You're on a roll. Keep up the good work!

Replay
Your next lesson will play in 10 seconds
• 0:58 Keys for Visualization…
• 1:50 Example #1
• 5:17 Example #2
• 9:30 Lesson Summary

Want to watch this again later?

Timeline
Autoplay
Autoplay

#### Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Lydia Neptune
A picture is worth a thousand words, but sometimes drawing that picture can be like doing origami with your eyes closed. Practice translating complex problems into simple, meaningful images in this lesson.

## Visualization

Let's stop and take a minute to think about how important visualization is to everything in everyday life. Now first, a little sidetrack. I'm reading a book right now about how they're trying to find astronauts to go up to Mars, and one of the things they have astronauts do is make a thousand cranes. You know, those little origami cranes. They take a sheet of paper, they follow two pages of instructions and they make a crane. Then they repeat this a thousand times. I don't know about you, but when I try to make a crane I end up with an airplane - a paper airplane - and it never flies particularly well either. But I have a really good friend who is fantastic at making these cranes. So what's the difference? Why can she make cranes and I can't?

## Keys for Visualization Problems

Well, it's because I don't follow these keys to understanding visualization problems from a sheet of paper. It's nothing more than making an origami crane. The first key is that you need to pull out the most important information. When you're following the instructions to make a crane, you might not care about the history of the crane, and certainly it's not important to actually making the crane right then and there. The second thing you want to do is to draw out the whole process. So in terms of making the crane, you want to test it out and actually try folding some things. The last big key is that you need to check your results. So in the case of origami, you need to see 'Does this actually look like a crane?' In the case of a math problem, you need to look at all of the little details and make sure that your solution fits all of those from the original problem.

## Example #1

Let's do an example. Say you're given the following word problem. You have a square plot of land that is surrounded by a fence on all sides. One of your next-door neighbors has a rectangular plot that is the exact same size and same dimensions as yours. He would like to put up a fence around his plot. What percentage of his fence have you already completed for him?

Let's pull out the important information. One, you have a square plot of land. The fact that it's square is important, or at least it seems like it might be important. It's surrounded by a fence on all sides. One of the keys there is 'all sides.' Another is 'your next-door neighbor' - so we are going to underline 'next-door neighbor' because that means he's right next to you. He's not across the street, there's not a lot of land between you guys, he's right next door. And he has a plot that's got the same size and dimensions as yours. Even though we called it a rectangular plot, because it's got the same size and dimensions, we know that it's actually a square. Everybody knows that's a rectangle - it's just a particular type of rectangle. What have I got so far? We have a square plot, a fence on all sides, a next-door neighbor, and the same size and dimensions. I'm also going to say that the ending question is really important. If you don't know what you're solving, you can't solve it. So I'm going to highlight 'what percentage of his fence have you completed for him already.'

The second big key is to draw it out. So let's draw this out. I'm going to draw out a square plot of land and call it mine. I'm going to surround it by a fence on all sides, with a next-door neighbor who has a rectangular plot the same size and dimensions. So here's my plot, and here's his plot. It looks just like mine, and it's right next door to mine. I'm going to circle my plot with a fence on all sides. In a different color, I'm going to put his fence, or what he would like around his entire plot. I've drawn it out, and now I just need to solve it. What percentage of his fence have I already completed for him? Let's look at what I drew out. He needs to surround his plot of land on all four sides with a fence, but one of those sides is adjacent to my plot. So I've already done the fence on that side. This means that one side of his fence is done and he needs three sides. What percentage of the fence have I completed for him? I've completed one side, and he needs four sides total. So 1 divided by 4; I've completed 25% of his fence for him. Now does this make sense? If I look at my drawing, with my 25% that I've completed for him, I see that here is my plot of land and here is his plot of land. Let's go back and re-read the question and make sure that everything in the question is what we have.

You have a square plot of land? (Check.) Surrounded by a fence on all sides? (Check.) A next-door neighbor (check) has a rectangular plot (okay, a square is a rectangle, check), and it's the same size and dimensions as mine. (Check, it looks just like mine.) He wants to put up a fence around his plot. I've got that here. What percentage of his fence have I completed for him already? Well, 25%. Okay, I match all of these. My diagram fulfills all of the requirements from here. So I'm good to go.

## Example #2

Let's do another one. Let's do a slightly harder one. We are given a paper rectangle of area 40 centimeters squared that has a width of 8 centimeters and a height of 5 centimeters (well, yes, a width of 8 centimeters and height of 5 centimeters will give me 40 centimeters squared, so I'm good.) I'm going to cut 1-centimeter squares from each of the four corners. Then I'm going to fold up each side to make an open box. What is the volume of the box?

To unlock this lesson you must be a Study.com Member.

### Register for a free trial

Are you a student or a teacher?

#### See for yourself why 30 million people use Study.com

##### Become a Study.com member and start learning now.
Back
What teachers are saying about Study.com

### Earning College Credit

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.