How to Use Trigonometric Substitution to Solve Integrals

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: How to Solve Improper Integrals

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:05 Solving with Tables
  • 1:26 Solving by Substitution
  • 3:06 Solving by Parts
  • 4:30 Solving by Riemann Sums
  • 4:49 Example of Solving by Parts
  • 12:00 Lesson Summary
Save Save Save

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Speed Speed Audio mode
Lesson Transcript
Instructor: Kelly Sjol
In this lesson, we use each of the common integration techniques to solve different integrals. It's not always obvious which technique will be the easiest, so being familiar with an arsenal of methods might save you a lot of work!

Solving with Tables

In these examples, taking the derivative of the right side gives you the integrand
Solving by Tables Integrand

Let's take a minute to review some techniques for integration. Here we're going to integrate the indefinite integral - that means it has no limits - of f(x)dx. We know that the integral of f(x)dx equals the anti-derivative as a function of x plus a constant of integration. If you take the derivative of the anti-derivative, you get back your original function. So what are some of the ways we know to find integrals?

First, we can use a table. This may be a table in a book, online or what you have memorized. For example, the integral of x^2dx = (1/3)x^3 + C. You know this because you know how to integrate polynomials. The integral of sin(x)dx = -cos(x) + C. The integral of e^(x)dx = e^(x) + C. For each of these cases, if you take the derivative of the right side, you end up with the integrand. This is true of all integrals; it's how you calculate an integral.

Solving by Substitution

The second way we know to calculate integrals is by substitution. In this case, we're going to take an integral that depends on x, and we're going to make a substitution where u equals some new function of x. By plugging in u, we hope to end up with a simpler integral that we can integrate with respect to u. For example, we have the integral sin(2x)dx. I want to substitute u for 2x, so u=2x and du=2dx. So I can plug those in, both for 2x and for dx, and my integral becomes 1/2 sin(u)du. I can use a table to solve this, because the integral of sin(u) is -cos(u). I get -1/2 cos(u) + C. Now I want to plug in 2x where I have u - that's my original substitution - so I get x back in my final answer. I get -1/2 cos(2x) + C. If I take the derivative of this, I end up with sin(2x). That's solving by substitution, and that is by far what you are going to use the most when solving integrals by hand, but there are a couple of other methods that you should be aware of.

udv = uv minus the integral of vdu is a rearrangement of the product rule
Solving by Parts Product Rule

Solving by Parts

One is integration by parts. Here you have the integral of udv = uv minus the integral of vdu. This is just a rearrangement of the product rule. An example would be the integral of xe^(x)dx. Here I'm going to set x equal to a new variable, u so that du=dx. I'm going to set e^(x)dx equal to dv, so v has to be equal to e^x because the derivative of e^x is e^(x)dx. If I plug u, v, du and dv into the right side of my equation for integration by parts, I end up with xe^x (that's uv) minus the integral of e^(x)dx (that's vdu). At this point, I can use a table in my head because I have memorized this integral. The integral of e^(x)dx is e^x, so if I plug that in, my integral becomes xe^x - e^x + C. If I take the derivative, I end up with xe^x.

Solving by Riemann Sums

The last way you can solve an integral is by Riemann Sums. This is not an analytical way to solve it; that is, you aren't going to have numbers left. You're going to solve it numerically, on a computer or calculator - you're going to plug in actual numbers.

Example of Solving by Parts

Let's do an example. Let's say you're given the integral of x^2(sin(x))dx. Your first step would be to see if you can remember this integral or look it up in a table. Most likely, any integral you come up with is either in a table or it isn't solvable. There are whole books on writing out integrals like this, all the possible integrals you can think of that actually have solutions. But let's say you don't have that book handy, so the first thing you try is substitution: u=sin(x) and du=cos(x)dx. This doesn't make much sense, because if you plug in sin(x) you get u but x^2 becomes arcsin^2(u). You just made life a little more complicated, so maybe that's not the best way to do it. Because substitution is still the first thing you want to go to, what about using u=x^2 and du=2xdx. That's good, but you still have sin(x), which would become sin(square root of u) and that again sounds really complicated. So maybe substitution isn't the method you want to look at.

Using integration by parts in the final example
Integration by Parts Example

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create an account

We use cookies on our site.

To learn more about the information we collect, how we use it and your choices visit our Privacy Policy .