Back To Course

Calculus: Help and Review13 chapters | 148 lessons

Instructor:
*Gerald Lemay*

Gerald has taught engineering, math and science and has a doctorate in electrical engineering.

It is fun to visualize the slices of a three-dimensional math object. In this lesson we use the idea of slices to understand hyperboloids of one sheet.

The next time you drive past a power plant, look at the towers. These are cooling towers. Power plants generate heat as well as electricity. The heat produces hot water which is allowed to cool before escaping into the atmosphere as steam. The tower's special shape aids the cooling process. A wide bottom gives a large area to hold the hot water. It's like a steaming hot cup of coffee; the wider the cup, the faster the liquid will evaporate as steam. As the steam rises, the narrowing of the tower makes the steam rise and cool even faster. By the time the tower has widened again, the steam is much cooler and ready for the atmosphere.

This fascinating math shape has a name: a **hyperboloid of one sheet**.

Imagine your job is to install one of these cooling towers. It arrives at the site lying on its side.

Being an aspiring mathematician, you decide to write an equation. As a good start, we define *x*, *y*, and *z* directions. Then, for the opening along the *x*-axis, we write:

At this point, we notice the negative goes with the *x* term. Okay, what if the tower is pointing along the *y*-axis?

You probably answered correctly! The *y* term has the negative sign. Here's the equation:

Enough playing games with this tower! Let's stand it up with the opening along the *z*-axis.

The minus sign is now in front of the *z* term, just like we expected:

Here are some observations: the hyperboloid equation describes a symmetric figure going to infinity for both positive and negative *z*. We are showing only a portion of this infinite figure in the drawings. Also, an actual cooling tower is not symmetric. The part of the tower where it narrows is sometimes called the **throat**. More tower is situated below the throat than above it. We will return to these observations later when we design a tower.

For now, let's have some real fun by slicing up this hyperboloid as if it were a cake. A hyperboloid cake is not your basic cake!

Let's say we have the hyperboloid in its standing-up direction. The origin is at the center of the hyperboloid. The origin is where *x*, *y*, and *z* are all equal to zero. Imagine taking a horizontal slice at the narrowest part. This slice amounts to setting *z* equal to 0:

Setting *z* equal to 0 gives us:

This is the equation of an ellipse in the xy-plane. Imagine you are suspended above the hyperboloid, a little ways to the side, and you are looking down. Do you see the ellipse? This type of hyperboloid is called an **elliptical hyperboloid**.

Typically, though, the horizontal slices for towers are circular. In our hyperboloid equation, we just set *a* equal to *b*. This type of hyperboloid is called a **circular hyperboloid** (also known as a **hyperboloid of revolution**).

Now let's get creative with our slices. What about a vertical slice? If we take a vertical slice of the hyperboloid, we get a hyperbola.

What happens in the equation? We set *x* equal to 0 and to get the hyperbola slice in the yz-plane; now our equation reads:

By the way, the vertical slice in the xz-plane is also a hyperbola. In the equation, this happens by setting *y* equal to 0.

Now the names make more sense. Recall, a 'hyperboloid of revolution' is the other name for a 'circular hyperboloid.' If we revolved the hyperbola slice around the *z*-axis, the figure which appears has circles for its horizontal slices. Aha! It's a circular hyperboloid.

We can do lots of slices! Circles (or ellipses) slice parallel to the ground and hyperbolas slice vertically. A nice way to look at the hyperboloid might include many of these slices:

Enough slicing! Let's see what it takes to design a cooling tower.

What if we take the hyperboloid equation and use it to design a cooling tower?

Let's give the throat a 180-foot diameter and place it 340 feet above the ground. At the base, the diameter is 320 feet. The height of 400 feet is a typical number for these structures. The rest of our numbers come from measuring a cooling tower photo and scaling these numbers to the 400-foot height.

Here's a two-dimensional drawing of our cooling tower:

How does all of this relate to the equation and the figure of the 'Hyperboloid along the *z*-axis' ? As designers, we need to find *a*, * b*, and *c*.

First, let's play with the equation. The base is a circle, which tells us *a* = *b*. Also, *x*^2 + *y*^2 = R^2 where R is the radius of the circle. So,

At the throat, *z* = 0. From our equation using the radius, we get R^2/a^2 - 0 = 1, which means *a* = R. The design diameter is 180 feet, so the radius R is 180/2 = 90. Great! We have *a* = 90. What happened to *b*? Recall, *b* is equal to *a*.

This leaves us with finding *c*. To find this, we need to ask: what are *z* and R at the base? *z* is -340 feet and R = 320/2 = 160. Remember, our hyperboloid equation has *z* = 0 at the throat, so *z* is -340 at the ground. From R^2/*a*^2 - *z*^2/*c*^2 = 1, we can plug in our numbers and get 160^2/90^2 - (-340)^2/*c*^2 = 1. Of course, (-340)^2 is the same as (340)^2. To isolate *c*, we find: (160/90)^2 - 1 = 340^2/*c*^2 which simplifies to *c*=340/((160/90)^2-1)^.5, which rounds to 231.

Here's another thing we need to keep in mind: the hyperboloid equation is laid out to have *z* = 0 at the throat. We usually think of *z* = 0 as the ground level. It would be nice to shift the *z* values by 340 feet so the tower rests on the ground (and not under it!). We can do this by subtracting 340 from *z* in the equation. If you are uncomfortable with subtracting 340, we can choose from two ways to reason this out. If we solved the hyperboloid equation for *z*, then we would add 340 to the right-hand side to bring the values up. Transferring the 340 to the left-hand side means *z* has become *z* - 340. Another way to think about this is we have 0 at the throat. If the *z* term is now the term *z* - 340, then this new term is zero for *z* equal to 340. Hope that helps.

So, our design equation is:

What about the 'for' statement? The hyperboloid equation implies symmetry, and our design equation is valid for all values of *z*. Once we have *a*, *b*, and *c*, we can truncate the tower at any height we like. In this design, *z* starts at *z* = 0 (the ground) and ends at *z* = 400.

We've played with this figure enough - it's time to cool some steam!

A **hyperboloid of one sheet** is the typical shape for a cooling tower. A vertical and a horizontal slice through the hyperboloid produce two different but recognizable figures. One of the two slices is always a hyperbola. The other slice is either an ellipse or a circle. If this other slice is an ellipse, we have an **elliptical hyperboloid**. If the other slice is a circle, we have a **circular hyperboloid**. Another name for a circular hyperboloid is a **hyperboloid of revolution**.

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackWhat teachers are saying about Study.com

Already registered? Log in here for access

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
21 in chapter 1 of the course:

Back To Course

Calculus: Help and Review13 chapters | 148 lessons

- What is a Function: Basics and Key Terms 7:57
- Graphing Basic Functions 8:01
- Compounding Functions and Graphing Functions of Functions 7:47
- Understanding and Graphing the Inverse Function 7:31
- Polynomial Functions: Properties and Factoring 7:45
- Polynomial Functions: Exponentials and Simplifying 7:45
- Exponentials, Logarithms & the Natural Log 8:36
- Slopes and Tangents on a Graph 10:05
- Equation of a Line Using Point-Slope Formula 9:27
- Horizontal and Vertical Asymptotes 7:47
- Implicit Functions 4:30
- Normal Line: Definition & Equation
- Point of Intersection: Definition & Formula 4:59
- Point Slope Form: Definition, Equation & Example
- Point Symmetry: Definition & Examples 3:09
- Polar Coordinates: Definition, Equation & Examples
- Negative Reciprocal: Definition & Examples 3:39
- Solving 5 to the 4th Power 3:46
- Solving 5 to the Negative 4th Power
- Elliptic vs. Hyperbolic Paraboloids: Definitions & Equations
- Hyperboloids of One Sheet
- Go to Graphing and Functions: Help and Review

- SIE Exam Study Guide
- Indiana Real Estate Broker Exam Study Guide
- Grammar & Sentence Structure Lesson Plans
- Foundations of Science Lesson Plans
- Career, Life, & Technical Skills Lesson Plans
- Business Costs, Taxes & Inventory Valuations
- Using Math for Financial Analysis
- Assessments in Health Education Programs
- Governmental Health Regulations
- Understanding Health Education Programs
- AFOQT Prep Product Comparison
- ACT Prep Product Comparison
- CGAP Prep Product Comparison
- CPCE Prep Product Comparison
- CCXP Prep Product Comparison
- CNE Prep Product Comparison
- IAAP CAP Prep Product Comparison

- What is Deadlock? - Definition, Examples & Avoidance
- El Hombre que se Convirtio en Perro: Author, Summary & Theme
- Achilles in The Iliad: Character Analysis & Description
- A Wrinkle in Time Chapter 5 Summary
- Roald Dahl Project Ideas
- Media Literacy Activities for High School
- Letter M Activities
- Quiz & Worksheet - Shang Dynasty Religion & Culture
- Quiz & Worksheet - Alternative Assessment Types
- Quiz & Worksheet - Population Composition
- Quiz & Worksheet - Minimalist Painters
- Analytical & Non-Euclidean Geometry Flashcards
- Flashcards - Measurement & Experimental Design
- Anti-Bullying Guide | Stop Bullying in Schools
- Life Skills Resources for Teachers

- HSPT Test: Practice & Study Guide
- Political Science for Teachers: Professional Development
- Accounting 301: Applied Managerial Accounting
- Certified Nutrition Specialist (CNS): Test Prep & Study Guide
- Fundamental Chemistry
- Probability, Combinations & Permutations: Help and Review
- Consequentialist & Non-Consequentialist Philosophies
- Quiz & Worksheet - Reasons for the Creation of the Confederacy
- Quiz & Worksheet - Battle of Stones River
- Quiz & Worksheet - Pathway of the Pulmonary Circuit
- Quiz & Worksheet - How to Use a Question Mark
- Quiz & Worksheet - Helpful Protists

- What Is Biochemistry? - Definition, History & Topics
- How to Write a Magazine Article
- Respect Lesson Plan
- Missouri Alternative Teacher Certification
- Common Core State Standards in Nevada
- Systems Thinking Education & Training
- One Grain of Rice Lesson Plan
- Cause & Effect Experiments for Kids
- Alternative Teacher Certification in New York
- Homeschooling in Illinois
- Opinion Writing Prompts
- How to Ace a Phone Interview

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject