# Identify Where a Function is Linear, Increasing or Decreasing, Positive or Negative

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Linear Equations: Intercepts, Standard Form and Graphing

### You're on a roll. Keep up the good work!

Replay
Your next lesson will play in 10 seconds
• 0:06 Opposites
• 0:34 Linear or Nonlinear
• 2:01 Increasing or Decreasing
• 3:36 Positive or Negative
• 5:09 Lesson Summary

Want to watch this again later?

Timeline
Autoplay
Autoplay

#### Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Jeff Calareso

Jeff teaches high school English, math and other subjects. He has a master's degree in writing and literature.

Functions do all kinds of fun things. In this lesson, learn how to identify traits of functions such as linear or nonlinear, increasing or decreasing and positive or negative.

## Opposites

Opposites - they're everywhere: yin and yang; cats and dogs; Republicans and Democrats; bacon and foods that just aren't bacon.

The idea of opposites also comes into play with functions. In this lesson, we're going to look at a few different kinds of opposites that matter for differentiating functions. Feel free to pet a cat or dog as you watch, or munch on bacon, just don't pet your cat with bacon. They don't like that.

## Linear or Nonlinear

First up, let's talk about linear or nonlinear functions.

A linear function is a function that represents a straight line. As you might expect, a nonlinear function is a function that represents a line that isn't straight. That's surprising, I know. But, that's really all it is. There are many ways of thinking about linear functions, but usually the simplest is to just remember that linear means line and nonlinear means, well, not a line.

If you're asked to identify a function as linear or nonlinear based on a graph, you're really just looking for a straight line.

This one?

Linear.

This one?

Nonlinear.

This one?

Linear.

This one?

Nonlinear.

This one?

Chicken.

If you just have the function and no graph, you can make a table. In fact, sometimes you'll be given a table of x and y values and asked if the function is linear or nonlinear. Here's one:

x y
1 5
3 10
5 15
7 20
9 25

In a linear function, the y values will follow a constant rate of change as the x values. Above, notice that the x values are increasing by 2 each time. The y values are increasing by 5 each time. So, this is linear.

x y
1 5
3 10
5 20
7 35
9 55

Here, the x values are going up by 2 again, but each time the x values go up by 2, the y values go up by different amounts. So, they're not constant, and this function is not linear.

## Increasing or Decreasing

Next, let's look at increasing or decreasing. Maybe your waistline is increasing as the bacon on your plate is decreasing.

To be increasing, a function's y value is increasing as its x value increases. In other words, if when x1 < x2, then f(x1) < f(x2), the function is increasing.

To be decreasing, the opposite is true - a function's y value is decreasing as its x value increases. In other words, if when x1 < x2, then f(x1) > f(x2), the function is decreasing.

An increasing function looks like this:

Here, when x is 0, y is -1. When x is 5, y is about 1. As x goes up, so does y. That's increasing.

Decreasing looks like this:

Here, the y values are getting smaller as the x values increase. When you have a graph like the one above, just think of increasing and decreasing as going up or down from left to right. If a line rises, it's increasing. If it falls, it's decreasing. You could also think of slope. A positive slope is increasing, while a negative slope is decreasing.

In a nonlinear function like this:

To unlock this lesson you must be a Study.com Member.

### Register for a free trial

Are you a student or a teacher?

#### See for yourself why 30 million people use Study.com

##### Become a Study.com member and start learning now.
Back
What teachers are saying about Study.com

### Earning College Credit

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.