Back To Course

Algebra II Textbook26 chapters | 256 lessons

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Try it risk-freeWhat teachers are saying about Study.com

Already registered? Login here for access

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Yuanxin (Amy) Yang Alcocer*

Amy has a master's degree in secondary education and has taught math at a public charter high school.

Watch this video lesson to learn whether or not you can use Gaussian elimination to solve inconsistent and dependent systems. Also, learn whether there is another way to find solutions of these systems.

This video lesson is about inconsistent and dependent systems or collections of equations. What are they? **Inconsistent** systems are those systems that have no solution. **Dependent** systems are those systems that have an infinite number of solutions. Think of inconsistent and dependent as a traffic light. An inconsistent traffic light never works when you get there. You get a red light every time you get there, and you see all the other cars go, but your light is still red. You wait several rounds, and your light is still red. After a while, you avoid this inconsistent traffic light because you know you won't get anywhere. A dependent traffic light, on the other hand, always gives you the green light on time. You rely on this traffic light time and time again because you know whenever you get there, you will get a green light. So, while you will never go to an inconsistent traffic light, as it has no solutions for you, you will always go to the dependent traffic light because it has an infinite number of green lights for you.

Why should you learn about these? You will come across these types of systems as you go along in your math classes. Once you spot that the system you are working with is either inconsistent or dependent, then you can say that the system has no unique solution because it either has no solution or it has an infinite number of solutions. What causes these situations? For the inconsistent system scenario, this happens when at least two of the equations do not intersect when graphed. This means that they never meet or touch. So, for lines, it means that at least two of the lines are parallel. For planes, it means that at least two of the planes are parallel to each other. For a dependent system, it means that all the equations graph out the same line or plane. Because all the equations are the same, there is no unique solution. Instead, we have an infinite number of solutions because all the equations intersect at all the points.

Now that we know what inconsistent and dependent systems are, we can now ask whether or not we can use Gaussian elimination to help us solve them. Gaussian elimination is the process of turning the system of equations into a matrix, then using matrix operations to change the matrix into row echelon form where the lower diagonal is all zeros. At this point, we can use the last equation to solve for the last variable. We can then substitute this answer and substitute it into the second to last equation to find the next variable. We keep working our way back up until we have all our variables. Take a moment to refresh your Gaussian elimination skills if you need to. Of course, Gaussian elimination works if we have a unique solution, but will this work for inconsistent or dependent systems?

The short answer is no, it won't work. Why doesn't it work? What happens when we try to solve these types of systems using Gaussian elimination? Let's look at a couple examples to see what happens.

Let's first look at a system that is inconsistent. Let's see what happens when we apply Gaussian elimination to it.

Applying Gaussian elimination, we create our matrix by writing down the numbers associated with the variables as well as the constant numbers. We get this augmented matrix:

We want to eliminate the beginning 1 in the second row and the beginning 1 in the third row. To eliminate the 1 in the second row, we can go ahead and subtract the first row from the second to create a new second row. We get 0, 0, 0, 3. Whoa, whoa, whoa! Is this even possible? If we translate this row back into equation form, we get 0 = 3. Is this a valid statement? No, it's not. What does that mean? It means that we can't continue because there is no unique solution.

We see that for inconsistent systems, when we try to use Gaussian elimination, we end up with a false statement. That tells us that there is no unique solution, and we can't continue.

Well, what about the case of the dependent system? What happens when we try to use Gaussian elimination for this type of system? Let's take a look.

We first change this into matrix form:

Applying Gaussian elimination, we need to make the beginning 1 in the second row 0, and we need to make the first 4 and then the -8 in the third row 0. We can make the beginning 1 in the second row 0 by multiplying the second row by -2 and then adding it to the first row to create a new second row. Doing this we get 0, 0, 0 and 0. Okay, that's interesting. It's not a false statement, so let's keep going.

For the third row, we can multiply the first row by -2 and add it to the third to get a new third row. Doing this we get 0, 0, 0 and 0 for the new third row. Hmm. That's interesting too. This leaves me with just the one equation on the top since the other two equations are 0 = 0, which means nothing. Well, we need to stop because we see that we can't go any further to get a unique solution.

If you take these same systems and you try other methods of solving them, you will come across other obstacles. It all means that there is no method to solving inconsistent or dependent systems because there is no unique solution that can be found.

Let's review what we've learned now. We learned that **inconsistent** systems are those systems that have no solution, and **dependent** systems are those systems that have an infinite number of solutions. Gaussian elimination, one method of solving systems of equations, cannot be used to solve inconsistent and dependent systems. Because neither type of system has a unique solution, no method of solving them can be used. They will all yield results that don't mean anything or that don't make sense.

When you finish this lesson, you should be able to:

- Describe inconsistent and dependent systems
- Explain why Gaussian elimination cannot be used to solve these systems

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackWhat teachers are saying about Study.com

Already registered? Login here for access

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
8 in chapter 10 of the course:

Back To Course

Algebra II Textbook26 chapters | 256 lessons

- What is a Matrix? 5:39
- How to Write an Augmented Matrix for a Linear System 4:21
- How to Perform Matrix Row Operations 5:08
- Matrix Notation, Equal Matrices & Math Operations with Matrices 6:52
- How to Solve Inverse Matrices 6:29
- How to Solve Linear Systems Using Gaussian Elimination 6:10
- How to Solve Linear Systems Using Gauss-Jordan Elimination 5:00
- Inconsistent and Dependent Systems: Using Gaussian Elimination 6:43
- How to Take a Determinant of a Matrix 7:02
- Solving Systems of Linear Equations in Two Variables Using Determinants 4:54
- Solving Systems of Linear Equations in Three Variables Using Determinants 7:41
- Using Cramer's Rule with Inconsistent and Dependent Systems 4:05
- How to Evaluate Higher-Order Determinants in Algebra 7:59
- Go to Algebra II: Matrices and Determinants

- AFOQT Information Guide
- ACT Information Guide
- Computer Science 335: Mobile Forensics
- Electricity, Physics & Engineering Lesson Plans
- Teaching Economics Lesson Plans
- FTCE Middle Grades Math: Connecting Math Concepts
- Social Justice Goals in Social Work
- Developmental Abnormalities
- Overview of Human Growth & Development
- ACT Informational Resources
- AFOQT Prep Product Comparison
- ACT Prep Product Comparison
- CGAP Prep Product Comparison
- CPCE Prep Product Comparison
- CCXP Prep Product Comparison
- CNE Prep Product Comparison
- IAAP CAP Prep Product Comparison

- How to Write a Newspaper Article
- Anthem by Ayn Rand: Book Summary
- Field Hockey: Techniques, Rules & Skills
- What's the Difference Between Polytheism and Monotheism?
- Homeless Bird Discussion Questions
- The Tiny Seed by Eric Carle Activities
- Mending Wall Discussion Questions
- Quiz & Worksheet - Kinds of Color Wheels
- Quiz & Worksheet - Who, What, When, Where & Why
- Quiz & Worksheet - American Ethnic Groups
- Quiz & Worksheet - Phenol Reactions
- Analytical & Non-Euclidean Geometry Flashcards
- Flashcards - Measurement & Experimental Design
- Digital Citizenship | Curriculum, Lessons and Lesson Plans
- How to Differentiate Instruction | Strategies and Examples

- Anatomy and Physiology: Certificate Program
- AP Psychology Textbook
- Biology 106: Pathophysiology
- CLEP Principles of Macroeconomics: Study Guide & Test Prep
- CSET English: Study Guide & Test Prep
- MTEL History: Hinduism
- PLACE Mathematics: Trigonometric Graphs
- Quiz & Worksheet - Uses & Features of Aromatic Hydrocarbons
- Quiz & Worksheet - Calculating Monthly Loan Payments
- Quiz & Worksheet - Guess & Check with Positive Decimals
- Quiz & Worksheet - Nadine Gordimer
- Quiz & Worksheet - Characteristics of Prison Security

- Grouping to Factor Cubic Equations
- Parts Per Million: Definition, Calculation & Example
- Recycling Activities & Games for Kids
- First Grade Math Centers: Idea, Activities & Games
- How to Pass a Physics Test
- Transition Words Lesson Plan
- Shays' Rebellion Lesson Plan
- 504 Plans in Florida
- Multiple Intelligences Lesson Plan
- Earth Day Activities for Kids
- How to Find Financial Aid for Teachers
- ELL Services in Massachusetts

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject