Intermediate Value Theorem: Examples and Applications

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: What is a Vector in Math? - Definition & Examples

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:11 Using the Intermediate…
  • 2:13 Finding the Roots of…
  • 4:25 Finding the Roots as a…
  • 6:00 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Login or Sign up


Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Sarah Wright
Many problems in math don't require an exact solution. Some problems exist simply to find out if any solution exists. In this lesson, we'll learn how to use the intermediate value theorem to answer an age-old question.

Using the Intermediate Value Theorem

The intermediate value theorem says that if you have some function f(x) and that function is a continuous function, then if you're going from a to b along that function, you're going to hit every value somewhere in that region (a to b). Well, why is this useful? This helps you learn a lot about functions without having to graph them.

For example, if you have the function f(x)= x^3 + x^2, you can start to take a look at what f(x) equals for various values of x, like if x=0, then f(x)= 0 ^3 + 0^2, or just zero. When x=1, f(x) = 1^3 + 1^2, or 2. When x=2, f(x) = 2^3 + 2^2, which is 12.

x f(x)
0 0
1 2
2 12

Okay, great, so you've got this table here of x values and f(x) values. Well, we know that f(x) is a continuous function, so we can use this data to determine that f(x) is going to equal 1 somewhere between 0 and 1. How do we know this? Well, f(0)=0, and f(1)=2, so some value between 0 and 1 will give me f(x)=1. Another example is f(x)=10. Well, for what value of x does f(x)=10? I don't know, it's not actually on my chart, but I know that f(1)=2, and f(2)=12, so some value between 1 and 2 will give me f(x)=10. I can graph this to verify that f(x)=1 between 0 and 1, and f(x)=10 between 1 and 2.

Graph for the problem f(x) = 4x - x^2 -3
Graph of Finding the Roots

Finding the Roots

Let's look at another example. In this example we're going to be finding roots of an equation. So let's say we have f(x)= 4x - x^2 - 3. We want to know when f(x)=0. This is called finding the roots of f(x). Similar to the last example, we're going to make a table with x and f(x). When x=0, f(x)=-3, because we have (4)(0) - 0^2 - 3. When x=2, f(x)=1. When x=4, f(x)=-3.

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create An Account