Lateral Meristem & Secondary Shoot System Growth

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Structure of Leaves: The Epidermis, Palisade and Spongy Layers

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:05 Shoot System Review
  • 0:39 Secondary Growth
  • 1:53 Cambium
  • 4:07 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Login or Sign up

Create an account to start this course today
Try it free for 5 days!
Create An Account

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Danielle Weber

Danielle teaches high school science and has an master's degree in science education.

Why do some plants experience a secondary growth? Why do some plants grow only in height but others grow in height and width? Discover the answers to these questions in this lesson.

Shoot System Review

We've previously looked at the basic structures of the shoot system as well as primary growth of the stem. We will now look at another form of growth known as secondary growth of the stem.

Before we do, let's review a few key components of the shoot system, which is the above ground structures of plants, including the leaves, buds, stems, flowers and fruits. Primary growth occurs at the apical meristem and allows the plant stem to increase in length. However, some plants need more than just growth in the length of the stem. We will now look at this type of growth.

Growth at the apical meristem increases stem length and at the lateral meristem increases stem girth.
Plant stem growth

Secondary Growth

Remember that all plant stem growth occurs at the meristems of the shoot system because this is where cell division occurs. There are two types of meristem in the plant stem: apical and lateral. As we just reviewed, primary growth occurs at the apical meristem and increases plant stem length.

Secondary growth is growth at the lateral meristem and increases the girth of the stem. This type of growth is only found in dicots and is not found in monocots. In order to understand why it does not occur in monocots, let's review the structure of vascular tissue in both types of flowering plants. There are two types of vascular tissue: xylem, which moves water and dissolved minerals, and phloem, which moves food in the plant stem. In monocots and dicots, these structures are organized a bit differently.

In monocots, the xylem and phloem are found in paired bundles and are scattered throughout the stem. Remember that monocots are simple flowering plants such as grasses. However, in dicots - which are more advanced flowering plants such as roses and apple trees - the xylem and phloem are found in rings, with the xylem on the inside and the phloem on the outside. This organization allows for secondary growth of plant stems.


In dicot plants, new xylem and phloem are produced in a ring.
Vascular tissue in dicots

There are two types of tissue used during secondary growth: vascular cambium and cork cambium. Vascular cambium produces both types of vascular tissue - the xylem and the phloem. Cork cambium produces cork, which replaces the epidermis of the stem. Sometimes, when a plant gets taller because of primary growth, more vascular tissue is needed to transport water and nutrients throughout the plant. In order to provide new tissue, the vascular cambium creates new xylem and phloem. Because these tissues are found together in a ring in the stem in dicot plants, it is easy to create both types of tissue in one location. The xylem is produced on the inside of the ring and the new phloem is produced on the outside of the ring.

This creation of vascular tissue is what creates the rings that you see when you look at a tree. Secondary growth occurs on an annual basis as more tissue is needed for the tree in the spring following a rather non-active growth season in the winter. You can tell a bit about the growing conditions based on the size of the ring. If there was a good growth season with plenty of water and nutrients, the ring of vascular tissue will be larger than if there was a poor growing season with limited water and nutrients. Scientists can even use this information about the size of the rings in a tree to learn more about past climate patterns in an area.

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?
I am a teacher
What is your educational goal?

Unlock Your Education

See for yourself why 30 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back

Earning College Credit

Did you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it free for 5 days!
Create An Account