Back To Course

Math 101: College Algebra12 chapters | 95 lessons | 11 flashcard sets

Are you a student or a teacher?

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Zach Pino*

Do you know what to do if an equation doesn't look like y=mx+b?! If not, then this video is for you. Chances are the equation is in standard form, so we'll learn how to use standard form equations, how to graph them and why they can be helpful.

This video is on the different forms of a linear equation, specifically slope-intercept form and standard form, and how we can graph lines given to us in either of those forms. **Slope-intercept form ( y = mx+b)** is the one that most people are familiar with. It's the most common one you see but that doesn't mean it's the only way to represent a linear equation.

For example, if I had the line *y* = 3*x*+4, given to me in slope-intercept form, by using inverse operations and taking a positive 3*x* and undoing it with a -3*x* on both sides, I end up with the equation -3*x*+*y* = 4. These two equations are equivalent. They mean the same thing. They are the same thing, they're just written differently. What I end up with in this second one is what's called **standard form**. Essentially, because the *x*s and *y*s are on the same side of the equation. The generic standard form equation is A*x*+B*y* = C.

This is probably the second most common form of a linear equation that you see, but unlike slope-intercept form, the As and Bs do not necessarily give us any useful information like the *m* and *b* does in the slope-intercept form. That doesn't mean that there aren't still some advantages to standard form over slope-intercept form.

What we're going to find out is that the orientation of the variables in standard form makes finding the *x* and *y*-intercepts pretty quick and easy, which will allow us to kind of use a shortcut when it comes to graphing.

Here we have a question that asks us to graph the line -3*x*+2*y* = 6. So let's do it the way we know how, which is by using slope-intercept form to use the *m* value and *b* value to graph our line. But because this isn't given to us in slope-intercept form, it requires us to first put it in slope-intercept form by using inverse operations to get the *y* by itself. This means we have to first undo the -3*x* with a positive 3*x* to both sides; we have to undo a times by 2 with a divide by 2 to both sides. Now we have the equation *y* = (3/2)*x*+3. This equation is equivalent to the one we started with, just written in a different way.

Now that it's written in slope-intercept form, I know that I can use my *m* (my slope) and my *b* (my *y*-intercept) to graph it. I begin at 3 on the *y*-axis, and then I go up 3 and over 2 to find my next point using the slope. You could continue going up 3 and over 2 as many times as you wanted, but you notice that all your dots are in the same straight line. You can connect that line and you have your graph. Which isn't too bad, but these steps in the beginning that required us to first get the *y* by itself are unnecessary and sometimes they can be a little complicated, especially with the fractions. We'd rather know a way to do it without having to solve for *y*.

So let's take a look at the exact same problem: graph -3*x*+2*y* = 6. But this time, try to do it without having to do all those beginning steps where we get *y* by itself using inverse operations and having to deal with fractions and all that messy stuff.

We know that at the *x*-intercept, *y* is 0, and at the *y*-intercept, *x* is 0. So because we know this, it turns out that the *x* and *y*-intercepts are really easy to find. Check it out; if I know that the *x*-intercept at *y* is 0, I can simply substitute 0 in for *y* into my equation, which gives me -3*x*+(2*0) = 6.

Well, 2*0 just turns into 0, so this term just cancels out and all that we're left with are the *x*s, and it's a very simple, quick and easy division to both sides, because division undoes the multiplication of the -3, and we find that *x* = -2, which is my *x*-intercept. So I have the coordinates (-2,0).

I can find the *y*-intercept in exactly the same way. This time, plugging in 0 for *x*, gives me the equation 2*y* = 6 because the *x*s disappear. Again, I simply undo the times by 2 and divide by 2 and I find that *y* = 3, which gives me the point (0,3). And I have two points and we're done. I can put those two points on my graph - (-2,0), (0,3) - and as long as you have two points, you connect them with your line, and we end up with the exact same line that we did before, but this time we didn't have to solve for *y* and we didn't have to deal with fractions. It was actually a little bit easier.

So to review, we've talked about slope-intercept form and also standard form. We should also probably quickly discuss the pros and cons to each.

**Slope-intercept** form is a little more intuitive because it gives us more information straight from the rule; it tells us the *m* and the *b* that are obvious right from the rule that I can translate quickly into information on the graph.

But **standard form** is nice if we're trying to find intercepts because it makes it easy to substitute in 0 and solve for the remaining value. So if you're given an equation in standard form and you're asked to graph, there's no reason you really have to change it into slope-intercept form first, and we can use this shortcut of finding the intercepts to do it without having to do all the work of solving for *y*.

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackDid you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
4 in chapter 1 of the course:

Back To Course

Math 101: College Algebra12 chapters | 95 lessons | 11 flashcard sets

- What are the Different Types of Numbers? 6:56
- What Are the Different Parts of a Graph? 6:21
- What is a Linear Equation? 7:28
- Linear Equations: Intercepts, Standard Form and Graphing 6:38
- Graphing Undefined Slope, Zero Slope and More 4:23
- How to Write a Linear Equation 8:58
- What is a System of Equations? 8:39
- How Do I Use a System of Equations? 9:47
- Go to Foundations of Linear Equations

- Go to Functions

- GRE Information Guide
- Computer Science 310: Current Trends in Computer Science & IT
- Earth Science 105: Introduction to Oceanography
- Computer Science 331: Cybersecurity Risk Analysis Management
- Computer Science 336: Network Forensics
- World Literature: Drama Since the 20th Century
- Visual Art Since the 18th Century
- World Literature: Drama Through the 19th Century
- Defamation, Libel & Slander
- Elements of Music Overview
- ILTS Prep Product Comparison
- CTEL Prep Product Comparison
- TASC Prep Product Comparison
- FSA Prep Product Comparison
- SHSAT Prep Product Comparison
- MEGA Test Accomodations
- Study.com Grant for Teachers

- Materials & Resources for an Early Childhood Classroom
- Obstructive Shock: Causes, Symptoms & Treatment
- Interpreting & Calculating Seasonal Indices
- Managing Classroom Behaviors of Young Children
- Taekwondo Lesson Plan
- Normalization & Invisibility of Privilege in the Workplace
- Practical Application: Reducing Job Stress Using Time Management
- Solving Equations Using the Least Common Multiple
- Quiz & Worksheet - Real-World Applications of Learning
- Quiz & Worksheet - Dante's Inferno 4th Level of Hell
- Quiz & Worksheet - Coaching Agreements
- Quiz & Worksheet - Third-Person Pronouns
- Quiz & Worksheet - Code of Ethics for Teaching
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies

- Middle School Earth Science: Help and Review
- Middle School US History: Tutoring Solution
- Precalculus: High School
- Common Core Math - Geometry: High School Standards
- ILTS Social Science - Psychology (248): Test Practice and Study Guide
- Ecology and the Environment: Tutoring Solution
- MTTC Psychology: Psychological Testing
- Quiz & Worksheet - Kinds of Angles
- Quiz & Worksheet - Antipsychotic Drugs' Effects on the Brain
- Quiz & Worksheet - History of Cannabinoids & Overview of Types
- Quiz & Worksheet - Chronic Effects of Marijuana Use
- Quiz & Worksheet - Characteristics of Emotions and Moods

- Person-Environment Congruence: Implications for Older Adults
- How Children With Dialectal Differences Develop & Use English
- What is a Lexile Score?
- Math Riddles for Adults
- ELL Services in Illinois
- STAAR Test Taking Strategies
- Fun Math Games for 6th Grade
- Fun Math Games for 1st Grade
- Enlightenment Thinkers Lesson Plan
- How Long Does it Take to Learn French?
- What Is the International Reading Association?
- Mechanical Engineering Scholarships for High School Seniors

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject