Back To Course

Math 101: College Algebra12 chapters | 95 lessons | 11 flashcard sets

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Try it risk-freeWhat teachers are saying about Study.com

Already registered? Login here for access

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Zach Pino*

Do you know what to do if an equation doesn't look like y=mx+b?! If not, then this video is for you. Chances are the equation is in standard form, so we'll learn how to use standard form equations, how to graph them and why they can be helpful.

This video is on the different forms of a linear equation, specifically slope-intercept form and standard form, and how we can graph lines given to us in either of those forms. **Slope-intercept form ( y = mx+b)** is the one that most people are familiar with. It's the most common one you see but that doesn't mean it's the only way to represent a linear equation.

For example, if I had the line *y* = 3*x*+4, given to me in slope-intercept form, by using inverse operations and taking a positive 3*x* and undoing it with a -3*x* on both sides, I end up with the equation -3*x*+*y* = 4. These two equations are equivalent. They mean the same thing. They are the same thing, they're just written differently. What I end up with in this second one is what's called **standard form**. Essentially, because the *x*s and *y*s are on the same side of the equation. The generic standard form equation is A*x*+B*y* = C.

This is probably the second most common form of a linear equation that you see, but unlike slope-intercept form, the As and Bs do not necessarily give us any useful information like the *m* and *b* does in the slope-intercept form. That doesn't mean that there aren't still some advantages to standard form over slope-intercept form.

What we're going to find out is that the orientation of the variables in standard form makes finding the *x* and *y*-intercepts pretty quick and easy, which will allow us to kind of use a shortcut when it comes to graphing.

Here we have a question that asks us to graph the line -3*x*+2*y* = 6. So let's do it the way we know how, which is by using slope-intercept form to use the *m* value and *b* value to graph our line. But because this isn't given to us in slope-intercept form, it requires us to first put it in slope-intercept form by using inverse operations to get the *y* by itself. This means we have to first undo the -3*x* with a positive 3*x* to both sides; we have to undo a times by 2 with a divide by 2 to both sides. Now we have the equation *y* = (3/2)*x*+3. This equation is equivalent to the one we started with, just written in a different way.

Now that it's written in slope-intercept form, I know that I can use my *m* (my slope) and my *b* (my *y*-intercept) to graph it. I begin at 3 on the *y*-axis, and then I go up 3 and over 2 to find my next point using the slope. You could continue going up 3 and over 2 as many times as you wanted, but you notice that all your dots are in the same straight line. You can connect that line and you have your graph. Which isn't too bad, but these steps in the beginning that required us to first get the *y* by itself are unnecessary and sometimes they can be a little complicated, especially with the fractions. We'd rather know a way to do it without having to solve for *y*.

So let's take a look at the exact same problem: graph -3*x*+2*y* = 6. But this time, try to do it without having to do all those beginning steps where we get *y* by itself using inverse operations and having to deal with fractions and all that messy stuff.

We know that at the *x*-intercept, *y* is 0, and at the *y*-intercept, *x* is 0. So because we know this, it turns out that the *x* and *y*-intercepts are really easy to find. Check it out; if I know that the *x*-intercept at *y* is 0, I can simply substitute 0 in for *y* into my equation, which gives me -3*x*+(2*0) = 6.

Well, 2*0 just turns into 0, so this term just cancels out and all that we're left with are the *x*s, and it's a very simple, quick and easy division to both sides, because division undoes the multiplication of the -3, and we find that *x* = -2, which is my *x*-intercept. So I have the coordinates (-2,0).

I can find the *y*-intercept in exactly the same way. This time, plugging in 0 for *x*, gives me the equation 2*y* = 6 because the *x*s disappear. Again, I simply undo the times by 2 and divide by 2 and I find that *y* = 3, which gives me the point (0,3). And I have two points and we're done. I can put those two points on my graph - (-2,0), (0,3) - and as long as you have two points, you connect them with your line, and we end up with the exact same line that we did before, but this time we didn't have to solve for *y* and we didn't have to deal with fractions. It was actually a little bit easier.

So to review, we've talked about slope-intercept form and also standard form. We should also probably quickly discuss the pros and cons to each.

**Slope-intercept** form is a little more intuitive because it gives us more information straight from the rule; it tells us the *m* and the *b* that are obvious right from the rule that I can translate quickly into information on the graph.

But **standard form** is nice if we're trying to find intercepts because it makes it easy to substitute in 0 and solve for the remaining value. So if you're given an equation in standard form and you're asked to graph, there's no reason you really have to change it into slope-intercept form first, and we can use this shortcut of finding the intercepts to do it without having to do all the work of solving for *y*.

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackWhat teachers are saying about Study.com

Already registered? Login here for access

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
4 in chapter 1 of the course:

Back To Course

Math 101: College Algebra12 chapters | 95 lessons | 11 flashcard sets

- What are the Different Types of Numbers? 6:56
- What Are the Different Parts of a Graph? 6:21
- What is a Linear Equation? 7:28
- Linear Equations: Intercepts, Standard Form and Graphing 6:38
- Graphing Undefined Slope, Zero Slope and More 4:23
- How to Write a Linear Equation 8:58
- What is a System of Equations? 8:39
- How Do I Use a System of Equations? 9:47
- Go to Foundations of Linear Equations

- Go to Functions

- Introduction to HTML & CSS
- Introduction to JavaScript
- Computer Science 332: Cybersecurity Policies and Management
- Introduction to SQL
- Computer Science 203: Defensive Security
- Black History Month Lesson Plans & Resources
- Early Childhood Lesson Plan Templates & Examples
- JavaScript Language Basics
- Forms & JavaScript
- JavaScript & HTML
- What is the PHR Exam?
- Anti-Bullying Survey Finds Teachers Lack the Support They Need
- What is the ASCP Exam?
- ASCPI vs ASCP
- MEGA Exam Registration Information
- MEGA & MoGEA Prep Product Comparison
- PERT Prep Product Comparison

- Teaching Decoding Reading Strategies
- Economic Factors Impacting Economic Development
- Using Text Structure While Reading
- What is Military Time? - Definition & Format
- Practical Application for C Programming: Data Types & Variables
- Behavioral Model for Software Requirements: Definition & Example
- Major Ocean Current Circulation: Features & Patterns
- Quiz & Worksheet - The Minister's Black Veil Analysis
- Quiz & Worksheet - Similar Polygon Practice
- Quiz & Worksheet - Using Movement to Teach Children
- Quiz & Worksheet - Dallas Winston in the Outsiders
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies
- Grammar Worksheets & Practice
- ESL Games for the Classroom

- Understanding the Effects of Globalization in Business
- MTLE Early Childhood Education: Practice & Study Guide
- CBASE: Practice & Study Guide
- Effective Instructional Strategies for Teachers
- Western Civilization I: Help and Review
- Praxis Early Childhood Education: Sentence Structure
- ORELA Middle Grades Math: Solving Math Word Problems
- Quiz & Worksheet - Themes in A Farewell to Arms
- Quiz & Worksheet - Spread of Christianity By Missionaries
- Quiz & Worksheet - How Ancient Hebrews Moved In & Out of Egypt
- Quiz & Worksheet - Russell's The Problems of Philosophy
- Quiz & Worksheet - Electric Force

- Artistic & Oral Traditions of the Maya
- Influence of Social & Cultural Systems on Sense of Self
- 8th Grade Summer Reading List
- Do Private Schools Take Standardized Tests?
- Why Learn Spanish?
- Fun Math Games for Kids
- Student Loan Forgiveness in Texas
- California 8th Grade Science Standards
- What Looks Good on a College Application?
- Kansas State Science Standards
- Homeschooling in Alabama
- Grade 5 Minnesota Science Standards

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject