Linear Relationship: Definition & Examples

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: How to Graph Reflections Across Axes, the Origin, and Line y=x

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:01 What Is a Linear Relationship?
  • 0:27 How to Identify Linear…
  • 1:38 Examples of Linear…
  • 4:49 How to Work with…
  • 5:57 Lesson Summary
Save Save Save

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Speed Speed Audio mode

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Yuanxin (Amy) Yang Alcocer

Amy has a master's degree in secondary education and has taught math at a public charter high school.

Learn how beautifully simple linear relationships are and how easy they are to identify. Discover how you can see them in use in the world around you on an everyday basis and why they are useful. At the end of the lesson, test yourself with a quiz.

What is a Linear Relationship?

As its name suggests, a linear relationship is any equation that, when graphed, gives you a straight line. Linear relationships are beautifully simple in this way; if you don't get a straight line, you know you've either graphed it wrong or the equation is not a linear relationship. If you get a straight line and you've done everything correctly, you know it is a linear relationship.

How to Identify Linear Relationships

There are only three criteria that equations must meet to qualify as a linear relationship. What are they? Let's find out. To be called a linear relationship, the equation must meet the following three items:

1. The equation can have up to two variables, but it cannot have more than two variables.

2. All the variables in the equation are to the first power. None are squared or cubed or taken to any power. And also, none of the variables will be in the denominator. These are examples of equations that do not have a linear relationship.

not linear

You'll notice that these equations have variables that are squared and cubed. One equation has a variable in the denominator. When graphed, none will yield a straight line.

3. The equation must graph as a straight line. Linear relationships such as y = 2 and y = x all graph out as straight lines. When graphing y = 2, you get a line going horizontally at the 2 mark on the y-axis. When graphing y = x, you get a diagonal line crossing the origin.

Examples of Linear Relationships

There are equations in use in the real world today that meet all the criteria discussed above. Linear relationships are very common in our everyday life, even if we aren't consciously aware of them. Take, for example, how fast things such as cars and trains can go. Have you ever thought about how their speeds are calculated? When a police officer gives someone a speeding ticket, how do they know for sure if the person was speeding? Well, they use a simple linear relationship called the rate formula.

This formula tells us that the speed of a certain object is calculated by dividing the distance traveled by the time it took to travel that distance. So, if someone spent 1 hour traveling a distance of 80 miles on a 55 mph road, then you can be sure that they were speeding because 80 miles divided by 1 hour gives you 80 mph. At first glance, this formula looks like it doesn't fit the criteria because it looks like it has three variables. But, it really is a linear relationship because at least one of your variables will always be a constant depending on your problem. You can have a constant rate for which you have to solve for distance or time. The relationship would be 35 = d / t or whatever the given rate is. It's the same if the distance is given as the constant, r = 100 / t.

Another example is that of converting temperature from Fahrenheit to Celsius. If you live in the United States, you probably use Fahrenheit, but if you discuss weather with a friend who lives in a different part of the world, you may need to convert the temperature to Celsius. You can use the conversion formula to convert one temperature type to the other:

degree conversion

You just saw two formulas: one for converting Fahrenheit to Celsius and the other for converting Celsius to Fahrenheit. This is the formula that is used when you use an automatic temperature converter app. And also, on classic mercury thermometers where it shows both Fahrenheit and Celsius together, you can check it by plugging various numbers into the equations to see if it matches.

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create an account