# Mineral Density & Specific Gravity: Definition and Properties

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Silicate Minerals: Chemical Classifications & Examples

### You're on a roll. Keep up the good work!

Replay
Your next lesson will play in 10 seconds
• 0:07 Density & Specific Gravity
• 1:11 Mineral Density
• 3:18 Mineral Specific Gravity
• 5:21 Lesson Summary

Want to watch this again later?

Timeline
Autoplay
Autoplay

#### Recommended Lessons and Courses for You

Lesson Transcript
Instructor: John Simmons

John has taught college science courses face-to-face and online since 1994 and has a doctorate in physiology.

Mineral density and specific gravity are similar properties used by mineralologists to identify minerals. This lesson describes a common practice used to determine density and specific gravity.

## Density and Specific Gravity

Have you ever been fooled by the question, 'Which weighs more, a pound of feathers or a pound of bricks?' Well obviously, they have the same weight. Well, how about this question, 'Which weighs more, a liter of water or a liter of bricks?' The answer to this question is not so obvious. It requires an understanding of density, the amount of mass in a certain volume of material.

As brick has more mass per unit volume, it has a greater density. As the brick is more dense, it will sink in water. Mineralogists have often used a similar property called specific gravity to describe the density of a mineral. Specific gravity is simply a ratio of the mineral's mass to the mass of an equal volume of water. Different minerals have different densities and thus different specific gravities. This lesson will describe how density and specific gravity are used to differentiate between minerals.

## Mineral Density

Let's pretend you find an unknown specimen in your backyard. It's a heavy specimen, and you want to know what it is. As a novice mineralogist, you head to the laboratory to measure its density. Well, what to do first?

You need to determine the mass of the sample, so you weigh it on a scale and find its mass to be 150 grams. Now that you've identified the mass, you need to determine how much water the sample displaces. Fortunately, your sample is small enough to put in a beaker of water that's calibrated on the side. Before you place the sample in the water, you note the level at 100 milliliters, or 100 cubic centimeters (cc). After you place the sample in the water, you notice the level rises to 120 cc; therefore, 20 cc of water is displaced. This displaced volume of water is equal to the volume of the sample; therefore, your sample has a volume of 20 cc.

Now you're ready to calculate density. Simply divide the mass of the sample by the volume of the water displaced. Remember, the volume of the water displaced is equal to the volume of the sample.

So, density = mass / volume of water displaced. In our case, density = 150 grams / 20 cc of water. Density = 7.5 grams/cc.

Checking your mineral density handbook, you see that galena, the common form of lead, has a mineral density that ranges from 7.2 to 7.6. While the density does not provide definitive identification, you can use other properties to determine its identity definitely. For example, the sample has a metallic luster, which is characteristic of galena.

## Mineral Specific Gravity

Now that we have determined the density of our sample, it is a piece of cake to determine its specific gravity. Recall that specific gravity is simply the ratio of the sample mass to the mass of an equal volume of water. The density of our sample is 7.5 grams/cc. Our sample has a specific gravity of 7.5. Well, how do we know this? Recall that 20 cc of water was displaced by the sample.

To unlock this lesson you must be a Study.com Member.

### Register for a free trial

Are you a student or a teacher?

#### See for yourself why 30 million people use Study.com

##### Become a Study.com member and start learning now.
Back
What teachers are saying about Study.com

### Earning College Credit

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.