Back To Course

Math 104: Calculus14 chapters | 116 lessons | 11 flashcard sets

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 70,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Robert Egan*

Over the river and through the woods is only fun on a continuous path. What happens when the path has a discontinuity? In this lesson, learn about the relationship between continuity and limits as we walk up and down this wildlife path.

Consider for a minute a sidewalk that goes over the river and through the woods and perhaps over some hills. If I take a look at the elevation of the sidewalk as a function of location, then its function might look something like this. Now this is a continuous path; I can trace this path without lifting up my finger, so what about the limits along this continuous path? Well, If I look at the elevation as I approach the treeline, I might find that the elevation is 100 feet. Let's say there was a gigantic earthquake! And the earthquake split the ground at the treeline. Now, if I approach the treeline from the river, then the limit might be 100 feet. But if I approach the treeline from the woods, then the limit might be 120 feet. If I want to trace this path, it's now discontinuous; I have to lift my finger up from the paper to continue tracing it because of this discontinuity at the treeline.

What can we learn from our treeline? First, **limits** can be different when you approach a point from the left- or right-hand side. These are called **one-sided limits**. A mathematical example of this might be the function *f(x)* where it equals *x* for *x*<1 and it equals *x* + 1 for x is greater than or equal to 1. This is a lot like our earthquake example. For values less than 1, *f(x)*=*x*. At 1, this line jumps because *f(x)*=*x* + 1. At this point here, we have a limit approaching 1 on the left-hand side that's different from the limit approaching 1 from the right-hand side. So let's look at the limit from the left-hand side. We're going to differentiate this limit from the limit that's approaching 1 from the right-hand side by putting a minus sign by the number that we're approaching. The limit as *x* approaches 1 from the left side is 1, and the limit as *x* approaches 1 from the right side - which is designated by a plus sign - is 2.

The second thing we may have learned from our earthquake example is a little less obvious. Before the earthquake, the path was **continuous**, and before the earthquake, the limit as *x* approached some number, let's call it *C*, was independent of which side you took the limit. So you could approach the treeline from the left-hand side and get to 100 feet, and you could approach the treeline from the right-hand side to get to 100 feet. This was true across the whole path. After the earthquake, we had a **discontinuous** path. In particular, the limit of the elevation as we approached the treeline was undefined. Instead, we had to approach the treeline from either the river side or the tree side, and those two limits were different by about 20 feet.

From this, we learned a very important thing about continuity. We learned that a function, like *y*=*f(x)* is **continuous** in a region if the limit of that function as you approach any number equals the value of the function at that number. What this really means is that if you're approaching any point along your path, you can approach it from any direction and get to that point. There's not a discontinuity at that point either. Our path was continuous before the earthquake, and limits behaved nicely everywhere. You weren't going to all of a sudden fall off the face of the Earth as you were walking along the path.

After the earthquake, our path was **discontinuous**, and limits didn't behave nicely everywhere. For instance, if you were walking from the trees to the river, then all of a sudden you were going to fall off the path at the treeline because your path had a discontinuity.

To unlock this lesson you must be a Study.com Member.

Create your account

Already a member? Log In

BackDid you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
3 in chapter 5 of the course:

Back To Course

Math 104: Calculus14 chapters | 116 lessons | 11 flashcard sets

- Go to Continuity

- College 101: College Prep & Retail Business Lite
- Recruiting & Managing the Multigenerational Workforce
- CTEL 1, 2, 3 Combined Exam (031/032/033): Study Guide & Practice
- MoGEA Science & Social Studies Subtest: Study Guide & Practice
- CSET Physical Education (129/130/131): Study Guide & Practice
- ICAS Science - Paper J Flashcards
- PSAT - Reading Test Flashcards
- NES Family & Consumer Sciences (310) Flashcards
- UExcel Bioethics - Philosophical Issues Flashcards
- TECEP College Algebra Flashcards
- How To Pass The Elementary Algebra Accuplacer
- Accuplacer Tips
- How to Study for the Accuplacer
- HESI Test Cost
- Study.com ASWB Scholarship: Application Form & Information
- ACCUPLACER Prep Product Comparison
- Accuplacer Test Locations

- Strategies for Teaching Semantics to ESOL Students
- Applying Morphology to ESOL Instruction
- Jim Crow Laws in To Kill a Mockingbird
- Teaching ELL Students Narrative Writing
- Sorting Algorithm Comparison: Strengths & Weaknesses
- Practical Application: Writing Job Interview Questions
- Calculate the Intrinsic Value of a Firm
- Practical Application for Software Engineering: Component-Level Design
- Quiz & Worksheet - Language Objective for ESL Students
- Quiz & Worksheet - Victorian Architecture
- Quiz & Worksheet - Origins of the Muslim-Hindu Conflict
- Quiz & Worksheet - Choosing Grade-Appropriate Texts
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies

- Astronomy 101 Syllabus Resource & Lesson Plans
- US History to Reconstruction for Teachers: Professional Development
- Intro to Business for Teachers: Professional Development
- Organizational Behavior Textbook
- Human Geography Textbook
- Teacher Resources for 12th Grade English
- CSET Business - Computer Technology
- Quiz & Worksheet - Theories of Life Science
- Quiz & Worksheet - Global Environmental Law & International Treaties
- Quiz & Worksheet - Gold Properties & Uses
- Quiz & Worksheet - Risks of Pregnancy and Childbirth After 30
- Quiz & Worksheet - Artificial Selection's Role in Evolution

- Mesopotamian Ziggurat: Definition & Images
- Plant Photoreceptors: Definition, Types & Function
- NATA Certification Requirements
- CSET Science Requirements
- How Hard is the GMAT?
- Writing Prompts for High School
- Is it Good to Listen to Music While Studying?
- French and Indian War Lesson Plan
- Coordinate Geometry Lesson Plan & Activities
- Writing Competitions for Teens
- Romeo and Juliet Act 3 Lesson Plan
- Best Way to Study for the MCAT

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject