Back To Course

Math 101: College Algebra12 chapters | 94 lessons | 11 flashcard sets

Watch short & fun videos
**
Start Your Free Trial Today
**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 70,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Luke Winspur*

Luke has taught high school algebra and geometry, college calculus, and has a master's degree in education.

By rearranging a quadratic equation, you can end up with an infinite number of ways to express the same thing. Learn about the three main forms of a quadratic and the pros and cons of each.

Any time you throw something into the air, it's going to follow a parabolic path. From throwing your wrapper into the trash to throwing a 50-yard touchdown to launching a bird that seems a little bit angry, we see parabolas all over the place. It makes sense then that we want to be able to graph them because the graphs can help us answer questions, like will my bird hit its target?

But as is often the case in math, there is more than one way to go about it. In this case, by simply rearranging the parts of the quadratic equation, we can end up with an infinite number of ways to express the same thing. While most of the ways to write the quadratic equation are redundant and useless, there are three forms that actually have unique uses. These three main forms that we graph parabolas from are called **standard form**, **intercept form** and **vertex form**. Each form will give you slightly different information and have its own unique advantages and disadvantages. In this video, we'll go through both for all the different forms.

Let's begin with standard form, *y* = *ax*2 + *bx* + *c*. There it is in general form, and here are a few specific examples of what one might look like: *y* = *x*2 + *x* + 1 and *y* = -4*x*2 - 5*x* + 9.

To be completely honest, the main reason this one makes the cut as a useful form is because it's the easiest and most basic to write. While the other forms will require some fancy rearranging with algebra tricks, like factoring or completing the square, most quadratics will be in standard form straight from the beginning. This means that you can dive right into the problem from the get-go, while the other forms will often make you do work before you can even begin. Once we get past that, though, standard form doesn't have too much to offer. Perhaps, its most useful trait is that the *a* value tells you whether the parabola is concave up (positive *a* value) or concave down (negative *a* value), but it turns out that all the forms are going to have this ability.

The second trait of standard form has to do with the *y*-intercept of the parabola. Since the *y*-intercept is where *x*=0, substituting this in shows us that the *a* and *b* terms drop out, leaving us with only the *c* value. Therefore, the *c* value is always the *y*-intercept. This is kind of cool, but substituting *x*=0 into the other forms to find the *y*-intercept is pretty easy too. The last thing you can do with standard form is calculate the axis of symmetry with the formula *x* = -*b* / 2*a*. Once again, while this is kind of cool, finding the axis of symmetry is possible and actually easier with the other forms.

The next form we'll go over is intercept form, *y* = *a*(*x* - *p*)(*x* - *q*). This is the general form, and here are a few specific examples: *y* = -(*x* - 1)(*x* + 5) and *y* = 3(*x* + 5)(*x* + 9).

While it is true that every once in awhile you'll be given a problem that's already in intercept form, it will often be the case that you'll have to first factor the standard-form equation to make it look like intercept form. Although this can sometimes be a headache, there are advantages to doing the work. The *a* value will, again, tell you whether the parabola is concave up or down, and if you want to find the *y*-intercept, you can simply substitute in *x*=0 and quickly evaluate *a*(-*p*)(-*q*).

Where intercept form gets its name and passes standard form in usefulness, is in its ability to not just tell you where the *y*-intercept is but also where the *x*-intercepts are. Because the *x*-intercepts are where *y*=0, substituting in either *p* or *q* will give you a zero in your product, turning the entire equation into zero. Therefore, *p* and *q* are the two *x*-intercepts, or roots, of your quadratic. Be careful with the signs on your roots, though. Because the general equation has a -*p* and -*q*, an (*x* - 5) would actually mean a root at *x*=5, while an (*x* + 5) would mean a root at *x*= -5.

Lastly, because parabolas are symmetrical, the axis of symmetry must lie directly in between the two roots. This means you can find it on your graph by working your way into the middle or algebraically by calculating the average between the two points: *x* = (*p* + *q*)/2.

And finally we come to vertex form: *y* = *a*(*x* - *h*)2 + *k*. This is the general form, and these are some specific examples: *y* = 9(*x* + 5)2 - 1 and *y* = -(*x* - 3)2 - 1.

This time, getting your quadratic into this form requires you to complete the square, which is possibly the hardest algebraic trick of them all. But if you can, you are going to be rewarded for your hard work. First off, the *a* value still tells us whether it's concave up or down, and the *y*-intercept is still easily found by substituting in *x*= 0 and evaluating. But now, just like intercept form gave us the intercepts, vertex form will give us the vertex of our parabola straight from the equation: *h* is going to become the *x*-coordinate, and *k* will become the *y*-coordinate, of our vertex. Now, we can easily tell where the axis of symmetry is simply by remembering that it goes right through the middle of the graph where the vertex is. Therefore, the axis of symmetry is just the line *x* = *h*.

To review, depending on how you organize it, a quadratic equation can be written in three different forms: **standard, intercept and vertex**. No matter the form, a positive *a* value indicates a concave-up parabola, while a negative *a* value means concave down.

Standard form is the most basic and easy to come up with but has limited helpfulness. Intercept form is what you get if you're willing to factor the quadratic first, and in addition to all that standard form tells you, it also gives you the *x*-intercepts (or roots) of the parabola. Vertex form is what you get if you complete the square on the standard-form equation first, and in addition to all that standard form tells you, it also gives you the coordinates of the vertex.

Once you complete this lesson you'll be able to:

- Recall the different ways a quadratic equation can be written
- Know how a positive value and negative value differ on a graph
- Understand how to find the various forms of a quadratic equation

To unlock this lesson you must be a Study.com Member.

Create
your account

Already a member? Log In

BackDid you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
2 in chapter 4 of the course:

Back To Course

Math 101: College Algebra12 chapters | 94 lessons | 11 flashcard sets

- What is a Parabola? 4:36
- Parabolas in Standard, Intercept, and Vertex Form 6:15
- Multiplying Binomials Using FOIL & the Area Method: Practice Problems 5:46
- How to Factor Quadratic Equations: FOIL in Reverse 8:50
- Factoring Quadratic Equations: Polynomial Problems with a Non-1 Leading Coefficient 7:35
- How to Complete the Square 8:43
- Completing the Square Practice Problems 7:31
- How to Solve a Quadratic Equation by Factoring 7:53
- How to Use the Quadratic Formula to Solve a Quadratic Equation 9:20
- How to Solve Quadratics That Are Not in Standard Form 6:14
- Go to Factoring with FOIL, Graphing Parabolas and Solving Quadratics

- Go to Functions

- Psychology 316: Advanced Social Psychology
- Hiring & Developing Employees
- Accounting 305: Auditing & Assurance Services
- MTEL Physical Education (22): Study Guide & Test Prep
- Praxis Art - Content Knowledge (5134): Practice & Study Guide
- Prejudice, Stereotyping & Discrimination
- Aggression in Social Psychology
- Interviewing Job Candidates
- Adapting to Changes in Business as a Manager
- The Changing Work Environment
- What are TExMaT Exams?
- What is the Florida Teacher Certification Examination (FTCE)?
- Study.com TExES Scholarship: Application Form & Information
- Study.com FTCE Scholarship: Application Form & Information
- Study.com CLEP Scholarship: Application Form & Information
- List of FTCE Tests
- CLEP Prep Product Comparison

- Common Financial Ratios: Terms & Use
- What is Petty Theft? - Definition, Consequences & Law
- Collaborative Negotiation: Definition, Strategy & Examples
- What Is Larceny? - Definition, Types & Examples
- Word Choice in an Informational Text
- Clothing Construction: Terms, Basics & Methods
- Mixtec Writing: Codex Zouche-Noutall & Codex Bodley
- Circularly Linked Lists in Java: Creation & Uses
- Quiz & Worksheet - LM Curve in Macroeconomics
- Quiz & Worksheet - Antoine Lavoisier & Chemistry
- Quiz & Worksheet - Action Plans for Teams
- Quiz & Worksheet - Adaptable Organizations
- International Law & Global Issues Flashcards
- Foreign Policy, Defense Policy & Government Flashcards

- Quantitative Analysis Syllabus Resource & Lesson Plans
- Immunology: Help & Review
- AP US Government and Politics: Exam Prep
- FTCE General Knowledge Test (GK) (828): Mathematics Subtest Practice & Study Guide
- Team Building & Group Problem Solving
- External Validity
- Financial Statement Analysis in Accounting
- Quiz & Worksheet - Finding the Distance Between Moving Points
- Quiz & Worksheet - Properties of Penicillin
- Quiz & Worksheet - Graphs of Parallel and Perpendicular Lines
- Quiz & Worksheet - Factors of Antibiotic Effectiveness
- Quiz & Worksheet - Cryptococcus neoformans & gattii Infections

- Inhibitors of DNA/RNA Synthesis: How Rifamycins and Quinolones Kill Bacteria
- Coping Skills for Anxiety
- Maximizing Performance on SAT Subject Tests
- Photosynthesis Experiments for Kids
- How to Pass the US Citizenship Test
- NYSTCE Test Dates
- Free PSAT Practice Test
- Is the PSAT Hard?
- Things Fall Apart Lesson Plan
- What Are Good SAT Scores?
- LSAT Study Schedule
- Creative Writing Prompts

Browse by subject