Back To Course

Math 101: College Algebra13 chapters | 102 lessons | 11 flashcard sets

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Try it risk-freeWhat teachers are saying about Study.com

Already registered? Login here for access

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Luke Winspur*

Luke has taught high school algebra and geometry, college calculus, and has a master's degree in education.

By rearranging a quadratic equation, you can end up with an infinite number of ways to express the same thing. Learn about the three main forms of a quadratic and the pros and cons of each.

Any time you throw something into the air, it's going to follow a parabolic path. From throwing your wrapper into the trash to throwing a 50-yard touchdown to launching a bird that seems a little bit angry, we see parabolas all over the place. It makes sense then that we want to be able to graph them because the graphs can help us answer questions, like will my bird hit its target?

But as is often the case in math, there is more than one way to go about it. In this case, by simply rearranging the parts of the quadratic equation, we can end up with an infinite number of ways to express the same thing. While most of the ways to write the quadratic equation are redundant and useless, there are three forms that actually have unique uses. These three main forms that we graph parabolas from are called **standard form**, **intercept form** and **vertex form**. Each form will give you slightly different information and have its own unique advantages and disadvantages. In this video, we'll go through both for all the different forms.

Let's begin with standard form, *y* = *ax*2 + *bx* + *c*. There it is in general form, and here are a few specific examples of what one might look like: *y* = *x*2 + *x* + 1 and *y* = -4*x*2 - 5*x* + 9.

To be completely honest, the main reason this one makes the cut as a useful form is because it's the easiest and most basic to write. While the other forms will require some fancy rearranging with algebra tricks, like factoring or completing the square, most quadratics will be in standard form straight from the beginning. This means that you can dive right into the problem from the get-go, while the other forms will often make you do work before you can even begin. Once we get past that, though, standard form doesn't have too much to offer. Perhaps, its most useful trait is that the *a* value tells you whether the parabola is concave up (positive *a* value) or concave down (negative *a* value), but it turns out that all the forms are going to have this ability.

The second trait of standard form has to do with the *y*-intercept of the parabola. Since the *y*-intercept is where *x*=0, substituting this in shows us that the *a* and *b* terms drop out, leaving us with only the *c* value. Therefore, the *c* value is always the *y*-intercept. This is kind of cool, but substituting *x*=0 into the other forms to find the *y*-intercept is pretty easy too. The last thing you can do with standard form is calculate the axis of symmetry with the formula *x* = -*b* / 2*a*. Once again, while this is kind of cool, finding the axis of symmetry is possible and actually easier with the other forms.

The next form we'll go over is intercept form, *y* = *a*(*x* - *p*)(*x* - *q*). This is the general form, and here are a few specific examples: *y* = -(*x* - 1)(*x* + 5) and *y* = 3(*x* + 5)(*x* + 9).

While it is true that every once in awhile you'll be given a problem that's already in intercept form, it will often be the case that you'll have to first factor the standard-form equation to make it look like intercept form. Although this can sometimes be a headache, there are advantages to doing the work. The *a* value will, again, tell you whether the parabola is concave up or down, and if you want to find the *y*-intercept, you can simply substitute in *x*=0 and quickly evaluate *a*(-*p*)(-*q*).

Where intercept form gets its name and passes standard form in usefulness, is in its ability to not just tell you where the *y*-intercept is but also where the *x*-intercepts are. Because the *x*-intercepts are where *y*=0, substituting in either *p* or *q* will give you a zero in your product, turning the entire equation into zero. Therefore, *p* and *q* are the two *x*-intercepts, or roots, of your quadratic. Be careful with the signs on your roots, though. Because the general equation has a -*p* and -*q*, an (*x* - 5) would actually mean a root at *x*=5, while an (*x* + 5) would mean a root at *x*= -5.

Lastly, because parabolas are symmetrical, the axis of symmetry must lie directly in between the two roots. This means you can find it on your graph by working your way into the middle or algebraically by calculating the average between the two points: *x* = (*p* + *q*)/2.

And finally we come to vertex form: *y* = *a*(*x* - *h*)2 + *k*. This is the general form, and these are some specific examples: *y* = 9(*x* + 5)2 - 1 and *y* = -(*x* - 3)2 - 1.

This time, getting your quadratic into this form requires you to complete the square, which is possibly the hardest algebraic trick of them all. But if you can, you are going to be rewarded for your hard work. First off, the *a* value still tells us whether it's concave up or down, and the *y*-intercept is still easily found by substituting in *x*= 0 and evaluating. But now, just like intercept form gave us the intercepts, vertex form will give us the vertex of our parabola straight from the equation: *h* is going to become the *x*-coordinate, and *k* will become the *y*-coordinate, of our vertex. Now, we can easily tell where the axis of symmetry is simply by remembering that it goes right through the middle of the graph where the vertex is. Therefore, the axis of symmetry is just the line *x* = *h*.

To review, depending on how you organize it, a quadratic equation can be written in three different forms: **standard, intercept and vertex**. No matter the form, a positive *a* value indicates a concave-up parabola, while a negative *a* value means concave down.

Standard form is the most basic and easy to come up with but has limited helpfulness. Intercept form is what you get if you're willing to factor the quadratic first, and in addition to all that standard form tells you, it also gives you the *x*-intercepts (or roots) of the parabola. Vertex form is what you get if you complete the square on the standard-form equation first, and in addition to all that standard form tells you, it also gives you the coordinates of the vertex.

Once you complete this lesson you'll be able to:

- Recall the different ways a quadratic equation can be written
- Know how a positive value and negative value differ on a graph
- Understand how to find the various forms of a quadratic equation

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackWhat teachers are saying about Study.com

Already registered? Login here for access

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
2 in chapter 4 of the course:

Back To Course

Math 101: College Algebra13 chapters | 102 lessons | 11 flashcard sets

- What is a Parabola? 4:36
- Parabolas in Standard, Intercept, and Vertex Form 6:15
- Multiplying Binomials Using FOIL & the Area Method: Practice Problems 5:46
- How to Factor Quadratic Equations: FOIL in Reverse 8:50
- Factoring Quadratic Equations: Polynomial Problems with a Non-1 Leading Coefficient 7:35
- How to Complete the Square 8:43
- Completing the Square Practice Problems 7:31
- How to Solve a Quadratic Equation by Factoring 7:53
- How to Use the Quadratic Formula to Solve a Quadratic Equation 9:20
- How to Solve Quadratics That Are Not in Standard Form 6:14
- Go to Factoring with FOIL, Graphing Parabolas and Solving Quadratics

- Go to Functions

- AFOQT Information Guide
- ACT Information Guide
- Computer Science 335: Mobile Forensics
- Electricity, Physics & Engineering Lesson Plans
- Teaching Economics Lesson Plans
- FTCE Middle Grades Math: Connecting Math Concepts
- Social Justice Goals in Social Work
- Developmental Abnormalities
- Overview of Human Growth & Development
- ACT Informational Resources
- AFOQT Prep Product Comparison
- ACT Prep Product Comparison
- CGAP Prep Product Comparison
- CPCE Prep Product Comparison
- CCXP Prep Product Comparison
- CNE Prep Product Comparison
- IAAP CAP Prep Product Comparison

- What's the Difference Between Polytheism and Monotheism?
- Ethnic Groups in America
- What Are the 5 Ws in Writing? - Uses & Examples
- Phenol: Preparation & Reactions
- Plant Life Cycle Project Ideas
- Medieval Castle Project Ideas
- Samurai Project Ideas
- Quiz & Worksheet - Solvay Process
- Quiz & Worksheet - Kinds of Color Wheels
- Quiz & Worksheet - Understanding Abbreviations
- Quiz & Worksheet - Act & Rule Utilitarianism Comparison
- Analytical & Non-Euclidean Geometry Flashcards
- Flashcards - Measurement & Experimental Design
- What is Project-Based Learning? | PBL Ideas & Lesson Plans
- Science Lesson Plans

- Business Ethics: Skills Development & Training
- AP Environmental Science: Tutoring Solution
- Humanistic Psychology Study Guide
- McDougal Littell Modern World History - Patterns of Interaction: Online Textbook Help
- Prentice Hall History of Our World: Online Textbook Help
- Civil Rights in Political Science Lesson Plans
- America in the 1970s: Middle School Lesson Plans
- Quiz & Worksheet - Lab on Change in Electric Current
- Quiz & Worksheet - The Law of Large Numbers
- Quiz & Worksheet - Analyzing Results of Randomized Experiments
- Quiz & Worksheet - Inserting & Deleting Columns & Rows in Excel
- Quiz & Worksheet - Features & Limitations of Convenience Sampling

- How to Construct Graphs from Data & Interpret Them
- Peer Relationships & Productive Learning in Physical Education
- What is CDT Certification?
- Bible Study Topics
- How to Retake a Study.com Proctored Exam
- FTCE Elementary Education K-6: Passing Score
- Reading Games for Kids
- Fun Math Games for 4th Grade
- How to Pass the Police Exam
- ELA Common Core Standards in Illinois
- 3rd Grade Word Walls
- How to Learn French

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject