Back To Course

ELM: CSU Math Study Guide17 chapters | 147 lessons | 7 flashcard sets

Are you a student or a teacher?

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Jeff Calareso*

Jeff teaches high school English, math and other subjects. He has a master's degree in writing and literature.

Adding whole numbers is one thing. But adding fractions and mixed numbers? That's not so simple. Or is it? In this lesson, we'll practice arithmetic with both fractions and mixed numbers.

Fashion styles come and go, but there are certain fashion rules that never change. And you don't have to be a fashion expert to know some of these. For example, socks and sandals? Super comfortable, but not okay. Stripes and plaid? Don't do that. Vertical and horizontal stripes? That's just weird.

Fractions operate in much the same way. Depending on what you're trying to do with your fractions, you may need to color-coordinate. But sometimes you can just pick any two fractions and you're okay. It's all about the operation you're trying to perform. Let's work on practicing arithmetic with fractions and mixed numbers. First, though, let's quickly review what we're talking about.

A **fraction** is simply a part of a whole number. 1/2, 3/4, 25/26 - these are fractions. 26/26 would just be simplified to 1, which is not a fraction. Fractions consist of two parts, a numerator (which is the top number) and a denominator (which is the bottom number). A **mixed number** is a whole number and a fraction. Let's say you had 3/2. You could simplify that to 1 1/2. That's a mixed number. Okay, let's practice!

Let's start with **multiplication**. This is the easiest fraction operation. We just multiply the numerators, then multiply the denominators. It's like our closet only has matching colors.

So, 1/2 * 1/4 is just 1/8. 2/3 * 3/7? That's 6/21. 5/6 * 7/8? That's 35/48. When you multiply fractions, people are jealous of how good you look no matter what you wear.

Sometimes you need to do a little simplifying at the end. If you multiply 3/4 * 2/3, you get 6/12. That simplifies to 1/2.

With mixed numbers, we can follow the same process, but we first have to convert to an improper fraction. This just means multiplying the whole number times the denominator, then adding it to the numerator. So 1 1/2 becomes 3/2. 3 2/3 becomes 11/3. This is like working with more colors, though maybe they're all Earth tones, so they kind of all still go together.

So what is 4 1/2 * 2 3/4? 4 1/2 becomes 9/2 and 2 3/4 becomes 11/4. 9/2 * 11/4 is 99/8. We then convert that back to a mixed number by reversing the process we did before: divide the numerator by the denominator. The answer becomes the whole number and the remainder becomes the numerator. So we have 12 3/8.

What about 1 1/5 * 1 1/6? 1 1/5 becomes 6/5 and 1 1/6 becomes 7/6. 6/5 * 7/6 is 42/30, or 1 12/30. We can simplify that to 1 2/5.

If you want to add or subtract fractions, you need to abide by the fashion police. You can't just add 1/2 to 1/4. That's like going out wearing two kinds of plaid. You're not in a '90s grunge band, are you?

So we need to coordinate. To do that, we need to get the same denominator on both fractions. If we want to add 1/4 and 1/4, we just add the numerators and get 2/4. With 1/2 and 1/4, we need to find the least common denominator, which is 4. We multiply 1/2 * 2/2 to get 2/4. Now we can add them to get 3/4.

What about 3/5 + 2/3? The least common denominator is 15. So we multiply 3/5 * 3/3 to get 9/15. We multiply 2/3 * 5/5 to get 10/15. 9/15 + 10/15 is 19/15. That can be simplified to 1 4/15.

**Subtraction** works the same. We still can't wear that purple shirt with the neon green pants. Why do we have neon green pants, anyway? Oh, but subtraction practice.

What is 5/6 - 1/3? The least common denominator is 6, so we convert 1/3 to 2/6. 5/6 - 2/6 is 3/6, or 1/2.

What about 1/2 - 7/8? 8 is our least common denominator, so 1/2 becomes 4/8. 4/8 - 7/8 is -3/8.

With mixed numbers, it's simplest to convert to improper fractions. So for 3 1/3 - 2 1/2, we convert 3 1/3 to 10/3 and 2 1/2 to 5/2. 6 is our least common denominator. So 10/3 becomes 20/6. 5/2 becomes 15/6. 20/6 - 15/6 is 5/6.

What about 7 1/4 + 5 4/5? 7 1/4 becomes 29/4. 5 4/5 becomes 29/5. Our least common denominator is 20. So 29/4 becomes 145/20. 29/5 becomes 116/20. Add them together and we have 261/20, which is 13 1/20.

Finally, there's dividing fractions. This is for fashion pioneers. When we divide fractions, we turn the second fraction upside down and then multiply the fractions together. It's like the crazy stuff you see at those fancy fashion shows. Is she wearing pants on her head? Are those sunglasses on her knees?

So with (1/2) / (4/5), we turn 4/5 upside down to 5/4, which is its reciprocal. Then we do 1/2 * 5/4, which is 5/8.

What about (5/6) / (3/8)? 3/8 becomes 8/3. And 5/6 * 8/3 is 40/18. We can simplify that to 20/9, or 2 2/9.

**Dividing mixed numbers** is just like multiplying. We just need to first convert them to improper fractions.

So (2 2/3) / (1 1/2)? 2 2/3 becomes 8/3. And 1 1/2 becomes 3/2. The reciprocal of 3/2 is 2/3. And 8/3 * 2/3 is 16/9. That simplifies to 1 7/9.

What about (4 3/4) / (2 1/5)? 4 3/4 becomes 19/4. 2 1/5 becomes 11/5. We flip 11/5 to get 5/11. And 19/4 * 5/11 is 95/44. That converts to 2 7/44.

In summary, **multiplying** fractions involves just multiplying the numerators by each other, then the denominators. **Adding and subtracting** requires us to find the least common denominator. Then we just add or subtract the numerators. With division, we're in high fashion territory. We flip the second **fraction** to its reciprocal. Then we multiply them together. When we have **mixed numbers**, we convert them to improper fractions. And no matter what, no socks with sandals! I'm serious about that.

After watching this lesson, you might be able to apply basic arithmetic skills (addition/subtraction, multiplication/division) when solving problems with fractions and mixed numbers.

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackDid you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
9 in chapter 2 of the course:

Back To Course

ELM: CSU Math Study Guide17 chapters | 147 lessons | 7 flashcard sets

- How to Build and Reduce Fractions 3:55
- How to Find Least Common Denominators 4:30
- Comparing and Ordering Fractions 7:33
- Changing Between Improper Fraction and Mixed Number Form 4:55
- How to Add and Subtract Like Fractions and Mixed Numbers 4:14
- How to Add and Subtract Unlike Fractions and Mixed Numbers 6:46
- Multiplying Fractions and Mixed Numbers 7:23
- Dividing Fractions and Mixed Numbers 7:12
- Practice with Fraction and Mixed Number Arithmetic 7:50
- Solving Problems using Fractions and Mixed Numbers 7:08
- How to Solve Complex Fractions 5:20
- Calculations with Ratios and Proportions 5:35
- Using Proportions to Solve Ratio Problems
- Practice Problems for Calculating Ratios and Proportions 5:59
- Go to ELM Test - Numbers and Data: Rational Numbers

- GRE Information Guide
- Computer Science 310: Current Trends in Computer Science & IT
- Earth Science 105: Introduction to Oceanography
- Computer Science 331: Cybersecurity Risk Analysis Management
- Computer Science 336: Network Forensics
- Natural Resources & Environmental Impact
- World Literature: Drama Since the 20th Century
- Visual Art Since the 18th Century
- World Literature: Drama Through the 19th Century
- Defamation, Libel & Slander
- Study.com GRE Scholarship: Application Form & Information
- PHR Prep Product Comparison
- ILTS Prep Product Comparison
- CTEL Prep Product Comparison
- TASC Prep Product Comparison
- FSA Prep Product Comparison
- SHSAT Prep Product Comparison

- What is a Hematology Test? - Common Tests & Interpretations
- Promoting Parent Involvement in Student Literacy
- Special Populations in Education: Definition & Examples
- Strategies for Teaching Children in Foster Care
- African Dance Lesson Plan
- French Music Lesson Plan
- Cash Management Strategies: Spending & Saving
- Cloud Content Delivery Network Services: Features & Providers
- Quiz & Worksheet - Assessments that Measure Accuracy, Rate & Prosody
- Quiz & Worksheet - Measurable Learning Objectives
- Quiz & Worksheet - Work of Theodor Schwann
- Quiz & Worksheet - Java Max & Min Value in Java
- Quiz & Worksheet - Gathering Data from Numerous Assessments
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies

- GACE Reading (617): Practice & Study Guide
- Introduction to Anthropology: Certificate Program
- Precalculus: Homework Help Resource
- GMAT Test: Online Prep and Review
- Life Span Developmental Psychology: Help and Review
- MTTC Social Studies (Secondary): World War II
- NES/WEST Earth & Space Science Flashcards
- Quiz & Worksheet - Polyethylene
- Quiz & Worksheet - What Is Revenue in Accounting?
- Quiz & Worksheet - Empirical Probability
- Quiz & Worksheet - Formula for Independent Events in Probability
- Quiz & Worksheet - Calculating Depreciation Expense

- What is Corpus Callosum? - Definition, Function & Location
- Andy Warhol: Biography, Paintings & Photography
- Analytical Reasoning Questions on the LSAT
- Special Education Laws in Florida
- Money Management Lesson Plan
- Stock Market Lesson Plan
- FAFSA Work Study Deadline
- Money Management Lesson Plan
- Descriptive Writing Prompts
- Special Education Private Schools in California
- How to Pass Organic Chemistry
- Greenwich, CT Adult Education

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject