Properties and Postulates of Geometric Figures

Lesson Transcript
Instructor: Sharon Kim
Postulates are simple truths without formal proof which are used to construct theorems. Learn how these building blocks of mathematical theorems are used to make sense of concepts such as points, lines, and planes. Updated: 09/29/2021


Postulates are basic truths that do not require formal proofs to prove that they are true. Instead, these are used to prove other theorems to be true. Geometry is actually built on just a few basic truths or postulates. These deal with the very basic point, line, and plane.

Why do these postulates matter? They are important for you to know because these form the building blocks of geometry. Without knowing these, you won't really know or understand how geometry works. Once you know and understand these postulates, you can get a better and easier feel for geometry. Watch and see if you can easily remember all of them.

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Algebraic Laws and Geometric Postulates

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:01 Postulates
  • 0:45 Points
  • 2:27 Lines
  • 3:27 Planes
  • 4:00 Lesson Summary
Save Save Save

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Speed Speed


A point is simply a dot. In geometry, a point has no dimensions. It has no height, width, or length. The postulates that refer to points talk about how they form lines and planes.

One postulate says that given any two points, there is exactly one line that will pass through both points. You can remember this postulate easily by drawing two points and you will see that there is only one line you can draw to connect the two points together.

Another postulate says that for any three non-collinear points, there will be exactly one plane that will pass through all three points. 'Non-collinear' means that the points are not all on the same line. To remember this, picture any three points in space and picture placing a giant flat piece of paper so that the sheet touches all three points. You will see that there is only one way to do that.

Yet another postulate tells us that for both lines and planes, there will be at least one point that is not on the line or the plane, respectively. If the line belongs in one particular plane, there will be at least one point not on the line but that also belongs in the plane. It is similar for the plane. If the plane belongs in one space, there will be a point in the same space but is not in the plane. You can remember this by just picturing a stick or a sheet of paper. Can you find any other point that you can point to that is either not on the stick or the sheet of paper?


A line is any straight line or mark that extends forever. The postulates that deal with lines talk about how they are linked with a number line as well as how they behave in relation to planes.

The postulate that mentions the number line says that any line can be a number line. Any point on the line can be a 0 and any other point can be a 1. Remember this one by thinking of how you draw a number line. What do you start with? And also what is the second word in the word 'number line?'

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back

Resources created by teachers for teachers

Over 30,000 video lessons & teaching resources‐all in one place.
Video lessons
Quizzes & Worksheets
Classroom Integration
Lesson Plans

I would definitely recommend to my colleagues. It’s like a teacher waved a magic wand and did the work for me. I feel like it’s a lifeline.

Jennifer B.
Jennifer B.
Create an account to start this course today
Used by over 30 million students worldwide
Create an account