Properties of Shapes: Rectangles, Squares and Rhombuses

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Properties of Shapes: Triangles

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:05 Studying Shapes
  • 0:52 Rectangles
  • 2:03 Squares
  • 3:24 Rhombuses
  • 4:58 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Login or Sign up


Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Jeff Calareso

Jeff teaches high school English, math and other subjects. He has a master's degree in writing and literature.

What's the difference between a square and a rectangle? What about a rhombus and a square? In this lesson, we'll look at the properties of these shapes.

Studying Shapes

Let's talk about shapes. There are all kinds of shapes, and they serve all kinds of purposes. If the wheels on your bike were triangles instead of circles, it would be really hard to pedal anywhere. And, if bowling balls were cubes instead of spheres, the game would be very different.

Here, we're going to focus on a few very important shapes: rectangles, squares and rhombuses. All of them are quadrilaterals. That just means they all have four sides. Remember that 'quad' means 'four.' That means no pentagons or octagons will be discussed here. Sorry, fans of Department of Defense headquarters or, um, stop signs. But, even though they all have four sides, they all have their own special properties that make them unique.


Let's start with rectangles. A rectangle is a four-sided shape with all right angles. If you want to know if a shape is a rectangle, you just have two tests. Is it four-sided? And, are all the angles 90 degrees? If both answers are yes, then you're looking at a rectangle.

Rectangles are everywhere. Think about your average room. What's a rectangle in it? Doors, tables, windows, posters on the walls - they're all four-sided shapes with all right angles. Even the screen you're looking at right now is probably a rectangle.

In a rectangle, opposite sides are equal in length and parallel.
rectangle abcd

Rectangles have a few special properties. First, opposite sides are parallel. Second, opposite sides are equal in length. In the rectangle above, we know side AB is parallel to side CD, and BC is parallel to AD. Also, if we know AB is 6, then so is CD. If BC is 4, then so is AD.

The skinny skyscraper is a rectangle.
rectangular skyscraper

The fun thing about rectangles is that each pair of opposite sides can be a totally different length than the other pair. You can have a super skinny rectangle like the skyscraper above or a very even one like the old album cover below.

These album covers are rectangles.
image of album cover


That old album cover fits both the definition of a rectangle and the definition of our next shape, the square. Squares are a very special subset of rectangles. A square is a four-sided shape with all right angles and sides of equal length.

Does that definition look familiar? Here are the steps to define a square: Is it four-sided? Are all the angles 90 degrees? If yes, then you have a rectangle. If all the sides are the same length, then it's not only a rectangle, it's also a square. That means that all squares are rectangles. But not all rectangles are squares, since a rectangle's pairs of sides can have different lengths.

Just like rectangles, squares are everywhere. In addition to the album cover, think about the spaces on a chessboard, stamps, floor tiles and even a snack of crackers and cheese. Because each side of a square has the same length, you don't need to be given much information to solve most problems.

For example, if you see the square below where you know one side is 5, then you know all the other sides are 5 as well. So, the perimeter of this square is 5 * 4, or 20. The area of a square is s^2, or one side squared. So, the area of this square is 5^2, which is 25.

The sides of a square all have the same length.

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create An Account