Back To Course

Math 102: College Mathematics15 chapters | 121 lessons | 13 flashcard sets

Watch short & fun videos
**
Start Your Free Trial Today
**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 70,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Jeff Calareso*

Jeff teaches high school English, math and other subjects. He has a master's degree in writing and literature.

What's the difference between a square and a rectangle? What about a rhombus and a square? In this lesson, we'll look at the properties of these shapes.

Let's talk about shapes. There are all kinds of shapes, and they serve all kinds of purposes. If the wheels on your bike were triangles instead of circles, it would be really hard to pedal anywhere. And, if bowling balls were cubes instead of spheres, the game would be very different.

Here, we're going to focus on a few very important shapes: rectangles, squares and rhombuses. All of them are quadrilaterals. That just means they all have four sides. Remember that 'quad' means 'four.' That means no pentagons or octagons will be discussed here. Sorry, fans of Department of Defense headquarters or, um, stop signs. But, even though they all have four sides, they all have their own special properties that make them unique.

Let's start with rectangles. A **rectangle** is a four-sided shape with all right angles. If you want to know if a shape is a rectangle, you just have two tests. Is it four-sided? And, are all the angles 90 degrees? If both answers are yes, then you're looking at a rectangle.

Rectangles are everywhere. Think about your average room. What's a rectangle in it? Doors, tables, windows, posters on the walls - they're all four-sided shapes with all right angles. Even the screen you're looking at right now is probably a rectangle.

Rectangles have a few special properties. First, opposite sides are parallel. Second, opposite sides are equal in length. In the rectangle above, we know side AB is parallel to side CD, and BC is parallel to AD. Also, if we know AB is 6, then so is CD. If BC is 4, then so is AD.

The fun thing about rectangles is that each pair of opposite sides can be a totally different length than the other pair. You can have a super skinny rectangle like the skyscraper above or a very even one like the old album cover below.

That old album cover fits both the definition of a rectangle and the definition of our next shape, the square. Squares are a very special subset of rectangles. A **square** is a four-sided shape with all right angles and sides of equal length.

Does that definition look familiar? Here are the steps to define a square: Is it four-sided? Are all the angles 90 degrees? If yes, then you have a rectangle. If all the sides are the same length, then it's not only a rectangle, it's also a square. That means that all squares are rectangles. But not all rectangles are squares, since a rectangle's pairs of sides can have different lengths.

Just like rectangles, squares are everywhere. In addition to the album cover, think about the spaces on a chessboard, stamps, floor tiles and even a snack of crackers and cheese. Because each side of a square has the same length, you don't need to be given much information to solve most problems.

For example, if you see the square below where you know one side is 5, then you know all the other sides are 5 as well. So, the perimeter of this square is 5 * 4, or 20. The area of a square is *s*^2, or one side squared. So, the area of this square is 5^2, which is 25.

Then there is the rhombus. A rhombus is a little different from a square or rectangle. Here are the questions to ask if you think you're dealing with a rhombus: Is it four-sided? Are all the sides equal in length? If both answers are yes, then what you have is a rhombus.

Did you notice what was missing? Right angles. A rhombus doesn't need to have right angles. It can, but that's the big difference with a rhombus. I like to think of it like this: The word 'rhombus' is kind of like the word 'rhino.' If a rhino charges at a square and knocks it askew, it's not a square anymore. But, it is still a rhombus! Rhinos or no, the definition of a **rhombus** is a four-sided shape with sides of equal length.

There are a few notable properties for rhombuses. First, the opposite sides are parallel. That's true for rectangles and squares, too. But in a rhombus, even if the angles aren't 90 degrees, the opposite sides are still parallel to each other. So, in the one below, AB is parallel to CD. And, AD is parallel to BC. Also, the opposite angles are equal. Here, angle A equals angle C, and angle B equals angle D.

Plus, here's a fun one: If you draw diagonal lines from the corners, those lines form right angles. Since a square is a rhombus, that's true for squares as well. And, no matter how far that rhino pushes the rhombus, those diagonals still form right angles. A square is a rhombus, but a rhombus isn't necessarily a square. And, a rectangle can be a rhombus, but if the sides of a rectangle aren't all equal in length, then it's not a rhombus.

In summary, we looked at three different types of quadrilaterals, or four-sided shapes. First, there's the **rectangle**, which is a four-sided shape with all right angles. Its opposite sides are parallel and equal in length, but each pair of sides isn't necessarily the same length as the other pair.

Second, there's the **square**, which is a four-sided shape with all right angles and sides of equal length. A square is a type of rectangle, just one where all four sides are the same length. Finally, there's the **rhombus**, which is a four-sided shape with sides of equal length. The angles can be 90 degrees, but they don't need to be. So, a square is a rhombus, but not every rhombus is a square.

You'll be able to describe the properties of squares, rectangles and rhombuses after watching this video lesson.

To unlock this lesson you must be a Study.com Member.

Create
your account

Already a member? Log In

BackDid you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
1 in chapter 14 of the course:

Back To Course

Math 102: College Mathematics15 chapters | 121 lessons | 13 flashcard sets

- Go to Logic

- Go to Sets

- Properties of Shapes: Rectangles, Squares and Rhombuses 5:46
- Perimeter of Triangles and Rectangles 8:54
- Area of Triangles and Rectangles 5:43
- Circles: Area and Circumference 8:21
- The Pythagorean Theorem: Practice and Application 7:33
- How to Identify Similar Triangles 7:23
- Applications of Similar Triangles 6:23
- Parallel, Perpendicular and Transverse Lines 6:06
- Types of Angles: Vertical, Corresponding, Alternate Interior & Others 10:28
- Angles and Triangles: Practice Problems 7:43
- Properties of Shapes: Circles 4:45
- Go to Geometry

- Psychology 315: Psychology of Motivation
- Fraud Examination: Help & Review
- Psychology 314: Psychology of Learning
- Computer Science 201: Data Structures & Algorithms
- Drama 101: Intro to Dramatic Art
- Studying for Philosophy 101
- Motivation & Neuroscience
- Core Data Structures
- Object-Oriented Design Fundamentals
- Analyzing Algorithms
- Study.com FTCE Scholarship: Application Form & Information
- Study.com CLEP Scholarship: Application Form & Information
- List of FTCE Tests
- CLEP Prep Product Comparison
- CLEP Exam vs. AP Test: Difficulty & Differences
- CLEP Tests for the Military
- How to Transfer CLEP Credits

- Dollar Diplomacy: Definition & Examples
- Radio Wave: Definition, Spectrum & Uses
- SQL TRUNCATE String: Tutorial & Overview
- Business Analysis Tools, Techniques & Software
- Interpreting Pulmonary Diagnostics: Normal vs. Abnormal Results
- Health Policy Resources: Financial & Administrative
- Managing Relationships with Employees
- Edward Gibbon's Contributions to History & Historiography
- Quiz & Worksheet - Low Self-Esteem & Bullying
- Quiz & Worksheet - Demand Forecasting Techniques
- Quiz & Worksheet - How to Use Historical Data
- Quiz & Worksheet - Systems Thinking & Environmental Ethics
- Quiz & Worksheet - 4 Sided Polygons
- Political Philosophy & Social Justice Flashcards
- Ethics in Philosophy Flashcards

- MTEL History: Practice & Study Guide
- 6th-8th Grade Math: Practice & Review
- Business Law: Skills Development & Training
- Remedial 10th Grade English
- STAAR U.S. History: Test Prep & Practice
- Compass Math: Rational Functions
- Compass Math: Decimals
- Quiz & Worksheet - MLK's Assassination
- Quiz & Worksheet - Gerund Phrases
- Quiz & Worksheet - History of Christopher Columbus
- Quiz & Worksheet - Rhetorical Questions in Literature
- Quiz & Worksheet - History of Sharecroppers

- Operations with Integers: Add, Subtract, Multiply & Divide
- Creating a Learner-Centered Classroom & Environment
- Praxis Tests in Arkansas
- Finding Continuing Education Grants for Teachers
- Fun Math Games for 1st Grade
- What is CDT Certification?
- Logic Games for Kids
- 3rd Grade Word Walls
- Alcohol Awareness Activities
- Alternative Teacher Certification in Maryland
- 100th Day of School Project Ideas
- How to Pass the PHR Certification Exam

Browse by subject