Back To Course

Geometry: High School15 chapters | 160 lessons

Watch short & fun videos
**
Start Your Free Trial Today
**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 70,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Yuanxin (Amy) Yang Alcocer*

Amy has a master's degree in secondary education and has taught math at a public charter high school.

Watch this video lesson to learn how ratios and proportions are related. Also, learn how ratios and proportions are used in real life and how you can apply them to yours.

**Ratios** are used to compare values. They tell us how much of one thing there is compared to another. For example, ratios can be used to compare the number of girl puppies to boy puppies that were born. If we have a total of six puppies, where two are girls and four are boys, we can write that in ratio form as 2:4 (girls:boys). We can also write it in factor form as 2/4. To compare the number of boy puppies to girl puppies, we can simply rewrite our ratio with the number of boys first as 4:2 (boys:girls) or 4/2.

**Proportions** are related to ratios in that they tell you when two ratios are equal to each other. Let's see how proportions work for our puppies. Our first ratio of girls to boys is 2:4 for our litter of six. If our next litter had a ratio of 4:8 of girls to boys, it would be proportional to our first litter; because if we divide each of our ratios, we will find that they are equal: 2 / 4 = 0.5 and 4 / 8 = 0.5, as well. My ratios are proportional if they divide into the same number.

When things are proportional, they are also similar to each other, meaning that the only difference is the size. For our two litters of puppies, the ratio of girls to boys is the same. The only difference is that the second litter is twice as big as the first.

In the real world, ratios and proportions are used on a daily basis. Cooks use them when following recipes. I have a recipe for hummingbird food that calls for one part water to four parts sugar. In ratio form, the amount of water to sugar is 1:4. I can use one cup of water to four cups of sugar to make food for the hummingbirds. To make a bigger batch of hummingbird food, I use proportions to increase my batch. I can double it by doubling the ratio to 2:8. My two ratios, 1:4 and 2:8, are still the same since they both divide into the same number: 1 / 4 = 0.25 and 2 / 8 = 0.25.

Ratios and proportions are also used in business when dealing with money. For example, a business might have a ratio for the amount of profit earned per sale of a certain product such as $2.50:1, which says that the business gains $2.50 for each sale. The business can use proportions to figure out how much money they will earn if they sell more products. If the company sells ten products, for example, the proportional ratio is $25.00:10, which shows that for every ten products, the business will earn $25. These are proportional since both ratios divide into the same number: 2.50 / 1 = 2.5 and 25 / 10 = 2.5, also.

Just like these examples show, you can use ratios and proportions in a similar manner to help you solve problems. If a problem asks you to write the ratio for the number of apples to oranges in a certain gift basket, and it shows you that there are ten apples and 12 oranges in the basket, you would write the ratio as 10:12 (apples:oranges).

If the problem continues and asks you to make the gift basket three times bigger while maintaining the proportion of apples to oranges, you can do this by multiplying both numbers in the ratio by the amount you are increasing, in this case three. So, to triple our gift basket, we would multiply our 10 by three and our 12 by three to get 30:36 (apples:oranges). We can do this because we remember from algebra that multiplying a mathematical expression by the same number on both sides keeps the expression the same. We can check to see if our ratios are the same by dividing each of them: 10 / 12 = 0.833 and 30 / 36 = 0.833, which are equal. Because they are equal, it tells us that they are proportional.

What did we learn? We learned that **ratios** are value comparisons, and **proportions** are equal ratios. Ratios can be written with colons or as fractions. So, to compare the number of girls to boys in a litter of puppies, we can write 2:4 or 2/4 to say that there are two girls to four boys. If we double the litter size but the number of girls to boys changes to 4:8, we can say that both litters are in proportion since both ratios divide into the same number. And as we saw, ratios and proportions are used every day by cooks and business people, to name just a few.

Following this lesson, you should have the ability to:

- Define ratios and proportions and explain the relationship between them
- Identify two ways to write ratios
- Explain how to check whether two ratios are proportionate

To unlock this lesson you must be a Study.com Member.

Create your account

Already a member? Log In

BackDid you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
1 in chapter 7 of the course:

Back To Course

Geometry: High School15 chapters | 160 lessons

- Ratios and Proportions: Definition and Examples 5:17
- Angle Bisector Theorem: Definition and Example 4:58
- Solving Problems Involving Proportions: Definition and Examples 5:22
- Similar Polygons: Definition and Examples 8:00
- The Transitive Property of Similar Triangles 4:50
- Triangle Proportionality Theorem 4:53
- Constructing Similar Polygons 4:59
- Properties of Right Triangles: Theorems & Proofs 5:58
- The Pythagorean Theorem: Practice and Application 7:33
- The Pythagorean Theorem: Converse and Special Cases 5:02
- Similar Triangles & the AA Criterion 5:07
- What is a Polygon? - Definition, Shapes & Angles 6:08
- Go to High School Geometry: Similar Polygons

- Computer Science 311: Artificial Intelligence
- View High School: English 4
- View High School: English 3
- View High School: English 2
- View High School: English 1
- Major Political Developments from 1350-1871
- The 1920s in the U.S.
- The Legacy of Ancient Greece & Rome
- Sectionalism & the American Civil War
- Causes & Consequences of the Cold War
- FTCE Prep Product Comparison
- TExES Prep Product Comparison
- Study.com ASVAB Scholarship: Application Form & Information
- Study.com GED Scholarship: Application Form & Information
- Study.com GACE Scholarship: Application Form & Information
- Study.com CSET/CBEST Scholarship: Application Form & Information
- Study.com NES Scholarship: Application Form & Information

- Scrum Development Process Overview
- How to Write a Market Analysis
- Rome & Religious Architecture: Influences & Examples
- Identifying & Avoiding Common Negotiation Mistakes
- Johnson v. Zerbst: Case Brief & Summary
- Healthcare Fraud & Abuse Laws in Medicare & Medicaid
- Teaching Syntax to English Language Learners in California
- Inge Lehmann: Biography & Discontinuity
- Quiz & Worksheet - U.S. Healthcare Safety Net Services
- Quiz & Worksheet - Application of Newton's 2nd Law
- Quiz & Worksheet - Accounting for Healthcare After Retirement
- Quiz & Worksheet - The Endowment Effect
- Quiz & Worksheet - Human Personality vs. Computers
- International Law & Global Issues Flashcards
- Foreign Policy, Defense Policy & Government Flashcards

- AP European History Syllabus Resource & Lesson Plans
- Hospitality 306: Revenue Generation for Hospitality
- High School Psychology: Credit Recovery
- Glencoe Physical Science: Online Textbook Help
- High School Physics: Homeschool Curriculum
- Saxon Algebra 1/2: Functions & Trigonometry
- Using Employee Recognition to Reward & Motivate
- Quiz & Worksheet - Aggregate Fruit
- Quiz & Worksheet - Hallucination Types & Causes
- Quiz & Worksheet - Structure of Gynoecium
- Quiz & Worksheet - Corresponding Angles
- Quiz & Worksheet - Finding the Major Axis of an Ellipse

- The Dark Ages: Definition, History & Timeline
- Verdi's Macbeth Opera
- Best Online College English Courses
- What Does Redshirt Mean in Kindergarten?
- How to Pass a Math Test
- How to Multitask
- Homeschooling in New York
- How to Prep for the NYS Chemistry Regents Exam
- Jobs for Teachers Outside of Education
- 8th Grade Summer Reading List
- Math Fraction Games
- How to Pass the Texas Real Estate Exam

Browse by subject