Back To Course

Geometry: High School15 chapters | 160 lessons

Are you a student or a teacher?

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Yuanxin (Amy) Yang Alcocer*

Amy has a master's degree in secondary education and has taught math at a public charter high school.

Watch this video lesson to learn how ratios and proportions are related. Also, learn how ratios and proportions are used in real life and how you can apply them to yours.

**Ratios** are used to compare values. They tell us how much of one thing there is compared to another. For example, ratios can be used to compare the number of girl puppies to boy puppies that were born. If we have a total of six puppies, where two are girls and four are boys, we can write that in ratio form as 2:4 (girls:boys). We can also write it in factor form as 2/4. To compare the number of boy puppies to girl puppies, we can simply rewrite our ratio with the number of boys first as 4:2 (boys:girls) or 4/2.

**Proportions** are related to ratios in that they tell you when two ratios are equal to each other. Let's see how proportions work for our puppies. Our first ratio of girls to boys is 2:4 for our litter of six. If our next litter had a ratio of 4:8 of girls to boys, it would be proportional to our first litter; because if we divide each of our ratios, we will find that they are equal: 2 / 4 = 0.5 and 4 / 8 = 0.5, as well. My ratios are proportional if they divide into the same number.

When things are proportional, they are also similar to each other, meaning that the only difference is the size. For our two litters of puppies, the ratio of girls to boys is the same. The only difference is that the second litter is twice as big as the first.

In the real world, ratios and proportions are used on a daily basis. Cooks use them when following recipes. I have a recipe for hummingbird food that calls for one part water to four parts sugar. In ratio form, the amount of water to sugar is 1:4. I can use one cup of water to four cups of sugar to make food for the hummingbirds. To make a bigger batch of hummingbird food, I use proportions to increase my batch. I can double it by doubling the ratio to 2:8. My two ratios, 1:4 and 2:8, are still the same since they both divide into the same number: 1 / 4 = 0.25 and 2 / 8 = 0.25.

Ratios and proportions are also used in business when dealing with money. For example, a business might have a ratio for the amount of profit earned per sale of a certain product such as $2.50:1, which says that the business gains $2.50 for each sale. The business can use proportions to figure out how much money they will earn if they sell more products. If the company sells ten products, for example, the proportional ratio is $25.00:10, which shows that for every ten products, the business will earn $25. These are proportional since both ratios divide into the same number: 2.50 / 1 = 2.5 and 25 / 10 = 2.5, also.

Just like these examples show, you can use ratios and proportions in a similar manner to help you solve problems. If a problem asks you to write the ratio for the number of apples to oranges in a certain gift basket, and it shows you that there are ten apples and 12 oranges in the basket, you would write the ratio as 10:12 (apples:oranges).

If the problem continues and asks you to make the gift basket three times bigger while maintaining the proportion of apples to oranges, you can do this by multiplying both numbers in the ratio by the amount you are increasing, in this case three. So, to triple our gift basket, we would multiply our 10 by three and our 12 by three to get 30:36 (apples:oranges). We can do this because we remember from algebra that multiplying a mathematical expression by the same number on both sides keeps the expression the same. We can check to see if our ratios are the same by dividing each of them: 10 / 12 = 0.833 and 30 / 36 = 0.833, which are equal. Because they are equal, it tells us that they are proportional.

What did we learn? We learned that **ratios** are value comparisons, and **proportions** are equal ratios. Ratios can be written with colons or as fractions. So, to compare the number of girls to boys in a litter of puppies, we can write 2:4 or 2/4 to say that there are two girls to four boys. If we double the litter size but the number of girls to boys changes to 4:8, we can say that both litters are in proportion since both ratios divide into the same number. And as we saw, ratios and proportions are used every day by cooks and business people, to name just a few.

Following this lesson, you should have the ability to:

- Define ratios and proportions and explain the relationship between them
- Identify two ways to write ratios
- Explain how to check whether two ratios are proportionate

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackDid you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
1 in chapter 7 of the course:

Back To Course

Geometry: High School15 chapters | 160 lessons

- Ratios and Proportions: Definition and Examples 5:17
- Angle Bisector Theorem: Definition and Example 4:58
- Solving Problems Involving Proportions: Definition and Examples 5:22
- Similar Polygons: Definition and Examples 8:00
- The Transitive Property of Similar Triangles 4:50
- Triangle Proportionality Theorem 4:53
- Constructing Similar Polygons 4:59
- Properties of Right Triangles: Theorems & Proofs 5:58
- The Pythagorean Theorem: Practice and Application 7:33
- The Pythagorean Theorem: Converse and Special Cases 5:02
- Similar Triangles & the AA Criterion 5:07
- What is a Polygon? - Definition, Shapes & Angles 6:08
- Go to High School Geometry: Similar Polygons

- Computer Science 332: Cybersecurity Policies and Management
- Introduction to SQL
- Computer Science 203: Defensive Security
- GRE Information Guide
- Computer Science 310: Current Trends in Computer Science & IT
- Probability & Sample Space
- Polynomials Overview
- FTCE: Equations and Inequalities
- FTCE: Analyzing Data and Drawing Conclusions
- FTCE: Data Analysis & Visualization
- What is the ASCP Exam?
- ASCPI vs ASCP
- MEGA Exam Registration Information
- MEGA & MoGEA Prep Product Comparison
- PERT Prep Product Comparison
- MTLE Prep Product Comparison
- What is the MTLE Test?

- Anthropogenic Climate Change: Definition & Factors
- The Village of Umuofia in Things Fall Apart
- Six Sigma Green Belt: Project Examples
- Emmanuel Goldstein in 1984
- Access Control Lists (ACLs): Definition & Purpose
- Work Ethics Lesson Plan
- Fireside Chat Lesson Plan
- Quiz & Worksheet - Finding the Perimeter of a Hexagon
- Quiz & Worksheet - Of Mice and Men's Time Period
- Quiz & Worksheet - HR Policies & Procedures
- Quiz & Worksheet - Finding Math Factors
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies
- Math Worksheets for Elementary Students
- Inquiry-Based Learning

- College English Literature: Help and Review
- DSST Ethics in America: Study Guide & Test Prep
- Resources for Texas Educators
- Email Marketing 101: Intro to Email Marketing
- Technology Flashcards
- PSSA - ELA Grade 7: Sentence Types & Components
- PSSA - English Language Arts Grade 7 Flashcards
- Quiz & Worksheet - Characteristics of Nation States
- Quiz & Worksheet - Discourses on Livy Overview
- Quiz & Worksheet - Explanation of the White Man's Burden
- Quiz & Worksheet - Coherence in Writing
- Quiz & Worksheet - How to Inform Instruction Using Data

- Who Was Atreus? - Mythology & Curse
- Brain Stem Tumor: Treatment, Prognosis & Survival Rate
- Kentucky Science Standards for 4th Grade
- Homeschooling in Iowa
- Homeschooling in North Dakota
- Math Card Games for Kids
- NGSS Life Science for Middle School
- Ideas for Black History Month Projects
- Preparing for the AP Biology Exam: Tips & Tricks
- Anti-Bullying Resources for Kids
- Chemical Reactions Experiments for Kids
- Experiments with Magnets for Kids

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject