Try refreshing the page, or contact customer support.

You must create an account to continue watching

Register to view this lesson

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 79,000
lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you
succeed.

Jeff teaches high school English, math and other subjects. He has a master's degree in writing and literature.

What do we do with an exponent? In this lesson, we'll learn how to simplify and solve expressions containing exponents. We'll solve a variety of types of exponential expressions.

Exponents

What if you lived in a world where no one ever wore hats? This is what it's like for numbers in a world without exponents. Sure, sometimes their heads get wet. Plus, they don't have a discreet way to cover the fact that they didn't comb their hair.

Fortunately, some numbers have hats, which are called exponents. Now, exponents aren't just normal hats. They're worn off to the side, like a beret, to indicate the number's clear superiority over its hatless peers. But don't be intimidated by numbers with exponents. I mean, if you knew every person with a hat was just covering up messy hair, you wouldn't be intimidated, right?

An exponent is a number indicating how many times a number is multiplied by itself. 32? That's 3 * 3. 310? That's 3 * 3 * 3 *... well, times seven more 3s.

Positive Integers

So let's say you're asked to solve an exponential expression. Let's start with some involving positive integers, for example: 7^3. How do we solve this? Remember, the exponent tells us how many times we multiply the number by itself. You could think of it as: the bigger the number, the bigger the hat. And the bigger the hat, the more self-centered the number is, or the more time the number spends looking at itself in the mirror.

Our first expression is 73. That's not too fancy of a hat. We want to multiply 7 by itself three times. That's 7 * 7 * 7. Well, 7 * 7 = 49, and 49 * 7 = 343. So, 73 = 343. We just solved it!

Let's try another expression with a positive integer: 310. We saw this one before. That's a huge hat! This 3 must think it's pretty awesome. Let's count it out: 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3. Was that 10? Yep. If we do the math, we get 59,049. 310 = 59,049. That's huge!

Negative Integers

You don't have to have a positive outlook to wear a hat. Some of the gloomiest people I've ever met wore hats. The same is true with integers. Let's look at a couple of expressions with negative integers.

Let's start with (-4)2. That's a pretty modest hat. How do we solve it? Is it 4 * 4? No. Notice that the negative sign is inside the parentheses with the 4. It's in a glass case of emotion. So we need to do -4 * -4. That's positive 16. So, (-4)2 is positive 16.

What about (-1)3? Again, this expression is in a glass case of emotion. We want to do -1 * -1 * -1. We know it's going to be 1, but is it positive or negative? Let's see. A negative times a negative is a positive. And a positive times a negative is a negative. So, (-1)3 = -1.

With negative numbers, always check whether the exponent is odd or even. With odd exponents, the number will stay negative. With even exponents, the number will be positive. I guess odd hats can keep you feeling negative while even hats even you out.

Variables

Let's move on from these hat-wearing negative integers and try some variables. You may encounter a problem like this: Solve x4 when x = 6. What's this? This is like seeing a hat on a mannequin. x is our variable, blankly carrying the exponent while we figure out if we'd look good wearing it. Hey, mannequins look at themselves in mirrors, too. Well, they would if they had eyes.

Fortunately, we're told that x = 6. So what we need to figure out is 64. That's 6 * 6 * 6 * 6. 6 * 6 = 36. 36 * 6 is 216, and 216 * 6 is 1,296. So, x4 = 1,296 when x = 6.

Unlock Content

Over 79,000 lessons in all major subjects

Get access risk-free for 30 days,
just create an account.

That wasn't too complicated, was it? But what if we saw this: 58/55. Oh no. There are exponents in both parts of this fraction. It's like people in bunk beds wearing hats. I don't think you're supposed to wear a hat in bed. Let's simplify and solve so that no house rules are broken.

We could figure out 58 and then 55. Sure, that would work. And we'd get the correct answer. But simplifying first will save us some effort. Let's think about what we have here. The numerator is 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5. The denominator is 5 * 5 * 5 * 5 * 5. That's a lot of 5s. But you know what? We can cross out the duplicates. 5/5 is just 1.

Let's cross out all five of the 5s on the bottom and five matching 5s on the top. That leaves us with one in the denominator and 5 * 5 * 5, or 53, in the numerator. Well, at least we got the one in the bottom bunk to take its hat off.

What's 5 * 5 * 5? Well, 5 * 5 is 25. And 25 * 5 is 125. So, 58/55 is 125. That was way simpler than figuring out 58 and 55, right?

It works with variables, too. Let's say we have this:

Ugh. It's like the Brady Bunch kids sharing a room, all with hats. Let's simplify. We can think of this as four separate fractions, one for each variable and one for the constants, 25 and 20 - those are like the Brady parents. At least they're not wearing hats.

Let's start with them, 25 and 20. Those simplify to 5 and 4. With the variables, we can just subtract the smaller exponent from the larger one. With a4 over a3, we're left with a over 1. No exponents! Awesome. Then there's b2 over b2. Well, those just go away, don't they? The middle child always seems to get left out. Okay, now c6 over c4. We simplify that to c2 over 1. If we put this all together, we have this: 5ac2/4. That's much, much simpler!

Lesson Summary

To summarize, we practiced solving exponential expressions. An exponent tells us how many times a number is multiplied by itself. We looked at positive and negative integers. With the latter, we were careful to include the negative sign when it was part of the expression.

We then looked at a problem involving a variable. Here, we plugged in the given value for the variable and solved. Finally, we looked at a couple of fractions. With these, we were able to first simplify the expression and then solve.

Learning Outcomes

After watching this video lesson and reviewing its accompanying transcript, you could:

Understand how to simplify and solve expressions with exponents

Did you know… We have over 200 college
courses that prepare you to earn
credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the
first two years of college and save thousands off your degree. Anyone can earn
credit-by-exam regardless of age or education level.

Not sure what college you want to attend yet? Study.com has thousands of articles about every
imaginable degree, area of
study
and career path that can help you find the school that's right for you.

Research Schools, Degrees & Careers

Get the unbiased info you need to find the right school.

Study.com video lessons have helped over 30 million
students.

Students Love Study.com

"I learned more in 10 minutes than 1 month of chemistry classes"

- Ashlee P.

Students Love Study.com

"I learned more in 10 minutes than 1 month of chemistry classes"

- Ashlee P.

Earn College Credit

"I aced the CLEP exam and earned 3 college credits!"

- Clair S.

Family Plan Includes

Free parent account

Add one or more paid student subscriptions

View individual student lesson progress

Monitor quiz scores

Receive weekly email status updates

Over 65 million users have prepared for
{{displayNameByProductKey[registrationData.product || testPrepCocoon]}} and other
exams on Study.com

Teachers Love Study.com

"The videos have changed the way I teach! The videos on Study.com accomplish in
5 minutes what would take me an entire class."

- Chris F.

Teachers Love Study.com

"It provides a quick and engaging way to cover material needed to understand readings we are covering in class."

Teresa P.

Ohio, United States

"It provides a quick and engaging way to cover material needed to understand readings we are covering in class."

Teresa P.

Ohio, United States

"A teacher friend recommended Study.com for social studies. I enjoy assigning the videos to my students. The videos are short, to the point, and the quiz allows me to test their knowledge on whatever subject in social studies I am teaching at the time."

Nancy A.

Ohio, United States

"Every time I have searched for a lesson, there has been a perfect match to my needs as a middle school teacher of science, and algebra."

Kathy S.

New Jersey, United States

"Your lessons are very well developed, especially the videos that use analogies for scientific phenomena. Great way to memorize science concepts."

Lusy D.

California, United States

"I love the way the lessons are laid out in small chunks with quizzes to make sure you understand a concept before moving on. Excellent!"

Brandy K.

"I am a 7th-grade teacher and often use it for language arts and world history. The students find it quite engaging. On a professional note, it has helped me pass 2 out of the for 4 Single Subject CSET English Exams! Now I am using it to help me pass the last 2 subtest exams."

Scott S.

California, United States

"As a math/science tutor I find these lessons extremely helpful when introducing concepts to my students or reinforcing what they have been taught."

Tim H.

Barbados

"I like that students can retake quizzes until they achieve a perfect score. I also like the
ability to create "guided note templates" from the transcripts of each video lesson."

Jaime B.

Teacher, High School 9-12 Computer Science

West Plains, MO

Family Plan Includes

Free parent account

Add one or more paid student subscriptions

View individual student lesson progress

Monitor quiz scores

Receive weekly email status updates

Over 65 million users have prepared for
{{displayNameByProductKey[registrationData.product || testPrepCocoon]}} and other
exams on Study.com

Study.com video lessons have helped over 500,000
teachers engage their students.

Just a few seconds while we find the right plan for you