Back To Course

Math 102: College Mathematics15 chapters | 122 lessons | 13 flashcard sets

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Try it risk-freeWhat teachers are saying about Study.com

Already registered? Login here for access

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Yuanxin (Amy) Yang Alcocer*

Amy has a master's degree in secondary education and has taught math at a public charter high school.

Watch this video lesson to learn what simple steps you can take to solve quadratic inequalities using two binomials. See how it only requires a few steps to solve quadratic inequalities using this method.

On the surface, solving quadratic inequalities using two binomials sounds like a dry and boring topic. And, it might be, but knowing how to do this is useful in the real world. Say you work at a circus and need to figure out when one ball is underneath another ball when you throw each ball into the air; you can use what you learn in this video lesson to find the answer.

To begin, let's review some important terms. A **quadratic inequality** is an inequality where, after moving all your terms to one side, you end up with a quadratic on the one side, like this:

- -
*x*^2 + 5*x*+6 < 0

What do we know about **quadratic expressions**? We know that, in general, a quadratic has three terms in it: a term with a squared variable, a term with a single variable, and a term with only a number. The squared variable term is the part that makes the expression a quadratic.

We also know that a quadratic expression can also have less than three terms. As long as it has the squared variable term, then it is a quadratic. Because we have two sides to our inequality, our original problem can have terms on both sides. As long as you end up with a quadratic after moving all your terms to one side, you are working with a quadratic inequality. The inequality below, for example, is also a quadratic inequality.

We will use this inequality to show the two easy parts to solving quadratic inequalities.

If our first quadratic expression tells us the path of the first ball, and the second quadratic expression tells us the path of our second ball, then solving the inequality will tell us when our first ball is underneath the second ball.

So, now let's see how to go about solving this inequality.

The first part of the solution is to move everything to the left side. We will use algebra skills to do this. We will subtract and add the terms on the right side to both sides of the equations as needed to clear the right side. We look at what we have on the right side. We have a -6 and a -*x*^2 term. To move the -*x*^2 term, we add it to both sides and combine like terms. To move the -6 term, we add it to both sides as well and combine like terms. Like terms are terms with the same variable and same exponent. After doing this, we end up with a zero on the right side. On the left we have -x^2 + 5*x* + 6.

We have moved all our terms to one side, and we now have one combined quadratic to solve for. After this first part, we are ready for part two, which is solving the combined quadratic for zero and getting our answer.

To finish solving our quadratic inequality, we need to solve the combined quadratic for zero by temporarily changing the inequality sign into an equal sign. We can use what we know about factoring quadratics to find our zeroes. Our quadratic factors into this:

- (-
*x*- 1) (*x*- 6) = 0

After factoring, to find our zeroes, we set each factor equal to zero, and solve for the variable. We set the first factor, -*x* - 1, equal to zero to find the first zero. Solving for *x*, we add 1 to both sides to get -*x* = 1. We then multiply by -1 on both sides to get *x* = -1 for our first zero. We set our second factor, *x* - 6, equal to zero to find the second zero. We then add 6 to both sides to get *x* = 6 as our next zero. Our zeroes are located where *x* is -1 and 6.

From the zeroes that we have just found, we will now label a number of ranges based on the number of zeroes. In our case, we have a range where *x* < -1, another range where *x* is > -1 and *x* < 6, and a third where *x* > 6.

Our correct answer is one of these ranges. To figure out which range is the correct answer, we can graph our combined quadratic or think about the properties of quadratics. What we want to do is to find the range or ranges where our combined quadratic fits the inequality. For our problem, we need to find the parts where the quadratic is less than zero.

Let's think about the properties of quadratics. We know that if the *x*^2 term is negative, the quadratic is a parabola that opens downward. If the parabola opens downward, then the parts below zero are the parts that are outside the two zeroes or the area outside the middle area. So, our answer is the ranges of *x* < -1 and *x* > 6. Our answer has two ranges, and that's okay. Our answer tells us that when *x* < -1 or *x* > 6, our first ball is under our second ball.

We have used less than and greater than symbols since our inequality problem uses a less than symbol instead of a less than or equal to symbol. If it had an inequality sign with an 'or equal' part, then our answer ranges would use the symbol with the 'or equal' part as well.

We can summarize the steps we took to solving quadratic inequalities using two binomials to these:

- Move everything to the left side of the inequality.
- Solve the combined quadratic for zero by factoring.
- Find the ranges based on the zeroes of the quadratic.
- Pick the range or ranges where the inequality is true.

Solving these types of problems is not difficult and is useful for finding out real-world solutions, such as our two balls circus scenario.

- Recognize the properties of quadratic expressions
- Know how to solve for the variable
- List the steps for solving quadratic inequalities using two binomials

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackWhat teachers are saying about Study.com

Already registered? Login here for access

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
12 in chapter 4 of the course:

Back To Course

Math 102: College Mathematics15 chapters | 122 lessons | 13 flashcard sets

- What is a Parabola? 4:36
- Parabolas in Standard, Intercept, and Vertex Form 6:15
- Multiplying Binomials Using FOIL and the Area Method 7:26
- Multiplying Binomials Using FOIL & the Area Method: Practice Problems 5:46
- How to Factor Quadratic Equations: FOIL in Reverse 8:50
- Factoring Quadratic Equations: Polynomial Problems with a Non-1 Leading Coefficient 7:35
- How to Complete the Square 8:43
- Completing the Square Practice Problems 7:31
- How to Solve a Quadratic Equation by Factoring 7:53
- How to Use the Quadratic Formula to Solve a Quadratic Equation 9:20
- How to Solve Quadratics That Are Not in Standard Form 6:14
- Solving Quadratic Inequalities Using Two Binomials 5:36
- Go to Graphing and Factoring Quadratic Equations

- Go to Logic

- Go to Sets

- Go to Geometry

- Computer Science 109: Introduction to Programming
- Introduction to HTML & CSS
- Introduction to JavaScript
- Computer Science 332: Cybersecurity Policies and Management
- Introduction to SQL
- Early Civilizations & The Ancient Near East
- Fundamental Overview of World War I
- The Virginia Dynasty & Jacksonian America
- 1920's America and the Great Depression
- Building the United States After the American Revolution
- CEOE Test Cost
- PHR Exam Registration Information
- Claiming a Tax Deduction for Your Study.com Teacher Edition
- What is the PHR Exam?
- Anti-Bullying Survey Finds Teachers Lack the Support They Need
- What is the ASCP Exam?
- ASCPI vs ASCP

- Subtraction in Java: Method, Code & Examples
- Hydrogen Chloride vs. Hydrochloric Acid
- Extraction of Aluminum, Copper, Zinc & Iron
- Iroquois Culture, Traditions & Facts
- Noun Clauses Lesson Plan
- Adverb of Manner Lesson Plan
- Timeline Project Ideas for High School
- Quiz & Worksheet - Multi-Dimensional Arrays in C
- Quiz & Worksheet - What is a Diastereoisomer?
- Quiz & Worksheet - Mauryan Empire Art & Culture
- Quiz & Worksheet - What is a Convergent Sequence?
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies
- Bullying in Schools | Types & Effects of Bullying
- Assessment in Schools | A Guide to Assessment Types

- Ohio Assessments for Educators - Business Education (008): Practice & Study Guide
- Marketing for Real Estate Agents
- Science Flashcards
- History of the Vietnam War for Teachers: Professional Development
- Anatomy Flashcards
- Solving Ratio & Unit Rate Problems: CCSS.Math.Content.6.RP.A.3A-B
- MTTC History: Hinduism
- Quiz & Worksheet - Sun-Synchronous vs. Geostationary Orbits
- Quiz & Worksheet - The Equator, Tropics of Cancer & Capricorn
- Quiz & Worksheet - Socialization Changes Throughout Life
- Quiz & Worksheet - The US Constitution's Supremacy Clause
- Quiz & Worksheet - Predictors of Well-Being in Older Adults

- Fiscal Federalism & the Role of Federal Funds in State Policy
- Julius Caesar's Accomplishments as a Statesman
- How to Ace the Physician Assistant School Interview
- Math Word Walls: Ideas & Vocabulary
- College Scholarships for Adults
- Kingsport, TN Adult Education
- States that Require Physical Education
- Teacher Appreciation Day Ideas
- How to Pass the MPRE Exam
- Texas Physical Education Requirements
- Independent Study Courses
- Political Spectrum Lesson Plan

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject