Back To Course

Math 104: Calculus16 chapters | 135 lessons | 11 flashcard sets

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Try it risk-freeWhat teachers are saying about Study.com

Already registered? Login here for access

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Jeff Calareso*

Jeff teaches high school English, math and other subjects. He has a master's degree in writing and literature.

In the Kingdom of Rimonn there are three rivers. In this lesson, learn how these waterways demonstrate the power of the squeeze theorem for finding the limits of functions.

Welcome to the Kingdom of Rimonn! Now in the Kingdom of Rimonn, we have three primary rivers. We have the River Euler. We have the River Newton. And we have the River Tiny. We don't exactly know where Tiny goes, but we know he starts out in the hills and he ends in the sea. We know a few things about the rivers in the Kingdom of Rimonn. We know that Euler is always north of the River Newton. We know that Tiny is always north of Newton, but south of Euler. So we know that Tiny basically is always between Newton and Euler, we just don't know exactly where he goes.

We also know that Euler and Newton meet up. They get very close in a village called Moe. So because Tiny is surrounded by Newton and Euler throughout the entire length of the river, we know that Tiny also has to meet up in the town of Moe. Because we know that Tiny doesn't cross Euler or Newton, and since they meet up at Moe, Tiny must also meet up at Moe.

This principle is known as the **squeeze theorem** in calculus. Some people call it the sandwich theorem, but I like the term squeeze.

Now let's consider the village of Moe, and let's zoom in really close where Euler and Newton meet up. I can say that the limit, as we approach Moe, of Euler is this point here. Let's call it the town square. And the limit, as we approach Moe, of Newton is also the town square. Because Euler is always north of Tiny and Tiny is always north of Newton, I can write that the limit, as we approach Moe, of Tiny is also the town square.

So let's make this really formal. If the function *g(x)* is less than or equal to *f(x)*, which is less than or equal to *h(x)*, and the limit, as we approach some number, of *g(x)* equals the limit, as we approach that same number, of *h(x)*, then we've squeezed *f(x)* such that the limit, as we approach the same number, of *f(x)* is equal to both the limit of both *g* and *h*. In this case, *h* is like Euler, *g* is like Newton and *f* is like Tiny, and *f* is squeezed in here. So the limit as we approach Moe is that town square.

The best example of the squeeze theorem in practice is looking at the limit as *x* gets really big of sin(*x*)/*x*. I know from the properties of limits that I can write this as the limit, as *x* goes to infinity, of sin(*x*) divided by the limit, as *x* goes to infinity, of *x*, as long as *x* exists as this gets really, really big. But I can also write this as the limit, as *x* goes to infinity, of sin(*x*) * 1/*x*. I can use multiplication, the product property, to divide this into two limits.

Now to use the squeeze theorem, we need to look at what possible functions might surround this sin(*x*)/*x*. What will always be bigger and what will always be smaller? Well, sin(*x*) is always going to be between -1 and 1. So perhaps I can write that sin(*x*)/*x* will always be greater than or equal to -1/*x*. And sin(*x*) will always be less than or equal to 1/*x*. So maybe we can use -1/*x* and 1/*x* to squeeze sin(*x*)/*x*. So what happens to -1/*x* and 1/*x* as *x* gets really big? Well, as *x* gets really big, -1/*x* gets really close to zero. So the limit, as *x* gets really big, of -1/*x* is 0. Similarly, if we look at 1/*x*, the limit, as *x* goes to infinity, of 1/*x* is also zero. What we have here is that as we get very large, sin(*x*)/*x* is surrounded by things that are going to zero. So the limit, as *x* gets really large, of sin(*x*)/*x* must be zero.

So to recap, when you're thinking about the **squeeze theorem**, think of the kingdom of Rimonn, and think about what has to happen to the rivers of Newton, Euler and Tiny as we approach the village of Moe. Because Euler and Newton are going through the town square of Moe, Tiny must also. This is the same thing as saying if *g(x)* is less than or equal to *f(x)*, which is less than or equal to *h(x)*, and the limit, as we approach some number, of *g(x)* equals the limit, as we approach that number, of *h(x)*, then *f(x)* must also approach that number.

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackWhat teachers are saying about Study.com

Already registered? Login here for access

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
6 in chapter 7 of the course:

Back To Course

Math 104: Calculus16 chapters | 135 lessons | 11 flashcard sets

- AFOQT Information Guide
- ACT Information Guide
- Computer Science 335: Mobile Forensics
- Electricity, Physics & Engineering Lesson Plans
- Teaching Economics Lesson Plans
- FTCE Middle Grades Math: Connecting Math Concepts
- Social Justice Goals in Social Work
- Developmental Abnormalities
- Overview of Human Growth & Development
- ACT Informational Resources
- AFOQT Prep Product Comparison
- ACT Prep Product Comparison
- CGAP Prep Product Comparison
- CPCE Prep Product Comparison
- CCXP Prep Product Comparison
- CNE Prep Product Comparison
- IAAP CAP Prep Product Comparison

- Staircases: Types, Design & Construction
- Accounting for Nonprofit Organizations
- Hinge Joints in the Body: Definition, Movement & Examples
- Factors Affecting the Distribution of Wealth & Income
- Progressive Verb Tense Activities
- Protocols for Routing Mobile Ad-Hoc Networks: Proactive, Reactive, Hybrid
- EIGRP: Definition, Protocol & Functionality
- Quiz & Worksheet - What is Salsa Dancing?
- Quiz & Worksheet - Four Uses of Mass Communication
- Quiz & Worksheet - Microscopy Types & Uses
- Quiz & Worksheet - Orwell's 1984 as a Dystopia
- Analytical & Non-Euclidean Geometry Flashcards
- Flashcards - Measurement & Experimental Design
- Informative Essay Topics for Teachers
- Learning Styles Guide

- Chemistry: Credit Recovery
- Intro to Humanities: Tutoring Solution
- Introduction to Environmental Science: Certificate Program
- Business Law: Tutoring Solution
- Common Core ELA Grade 8 - Writing: Standards
- OAE - Integrated Social Studies: The Byzantine Empire
- WEST Math: Quadrilaterals
- Quiz & Worksheet - Fistula Characteristics & Treatment
- Quiz & Worksheet - Oswald Avery's Contributions to DNA
- Quiz & Worksheet - Function of Helper T Cells
- Quiz & Worksheet - Interest Career Assessments to Choose a Career
- Quiz & Worksheet - Process for Creating & Interpreting Histograms

- How Atoms & Molecules Form Solids: Patterns & Crystals
- What is Scrum? - Definition & Terminology
- Engineering Summer Programs for High School Students
- How Hard is the CSET Multiple Subjects Test?
- 8th Grade Science Projects
- FTCE Professional Education Test: Passing Score
- Easiest Way to Learn Spanish
- How to Study for Biology in College
- What is Dual Credit?
- Science Picture Books
- Engineering Internships for High School Students
- How to Learn Java

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject