Try refreshing the page, or contact customer support.

You must create an account to continue watching

Register to view this lesson

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 79,000
lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you
succeed.

Dr. Alston has taught intro psychology, child psychology, and developmental psychology at 2-year and 4-year schools.

Standard deviations are scores around the mean of a distribution. It measures how much a set of scores is dispersed around an average measure of variability. Deviations around the mean can be calculated to express it as a variance or a standard deviation.

Standard Deviation

A standard deviation is a statistic that is calculated as the square root of a variance, or a data set calculated by taking the mean of the squared differences between each value and the mean value. Because the differences are squared, units of variance are not units of data. This is why a standard deviation is the square root of the variance. The points or units plotted from the variance becomes the data set. Standard deviations and variances are common measures of dispersion.

Ïƒ = standard deviation

Ïƒ ² = variance

Average/Norm

A standard deviation is how a set of data is plotted around the mean (average) of a set of data. It is how a data set compares to a calculated norm or standard. The further the data spreads from the mean, the greater the deviation from the norm. Likewise, the closer the data are to the mean, the closer the data are to the norm, which creates a steep curve. The standard deviation of a data set that equals zero indicates all values in the set are the same.

Bell Curve

Standard deviation data sets are plotted and dispersed around a bell curve. A bell curve is a symmetrical curve that represents the distribution, values, and frequencies in a set of data. From the middle point at the top, it slopes in a downward arc on both sides. The top middle point is the mean value or the maximum probability. Probability is likelihood of occurrence.

Bell Curve

Distribution

As the probability decreases, the slope of the bell curve falls away from the mean. This explains why a wide deviation indicates a greater deviation from the mean. A normal distribution of data means that the numbers in the standard deviation's data set are close to the mean.

Units are plotted on the x-axis, or the horizontal line, in relation to how this information aligns with the frequency for each value on the y-axis, or the vertical line. For example, on the y-axis, salary, range may be from $50,000 to $200,000, with an average salary of $200,000 (top of the bell curve). Let's say we plot the salaries of 30 people, or units, on the x-axis. The x-axis would reflect where each worker's salary would be plotted according to how much each person made. To the right of the median average, the worker would make more than $200,000, and to the left of the median average, he or she would make less than $200,000.

Distribution

Deviations

One standard deviation from the mean (red area) on the x-axis usually accounts for about 68% of the data set. Two standard deviations from the mean (green area) usually accounts for about 95% of the data set. Likewise, three standard deviations from the mean (blue area) usually accounts for about 99% of the data set. Lastly, four deviations from the mean would be the white area.

Colored Deviation Curve

Unlock Content

Over 79,000 lessons in all major subjects

Get access risk-free for 30 days,
just create an account.

Using the example given, the further from the average salary of $200,000 earned (slope top), the greater the deviation from the mean (average). Also notice that the number of data sets would decrease with each standard deviation. Again, large standard deviation could reveal that not too many people are averaging $200,000 in earnings. A small standard deviation may be revealing that there are many who are averaging earnings around the norm for the 30 people plotted. Depending upon the size of the bell curve, another interpretation could be that everyone averages around the norm (a steep curve) or that not too many people are averaging $200,000 (a flatter slope).

Lesson Summary

A standard deviation is a statistic that is calculated as the square root of a variance, or a data set calculated by taking the mean of the squared differences between each value and the mean value. Because the differences are squared, units of variance are not units of data. This is why a standard deviation is the square root of the variance. The points or units plotted from the variance become the data set. Standard deviations and variances are common measures of dispersion.

A standard deviation is how a set of data is plotted around the mean (average) of a set of data. It is how a data set compares to a calculated norm or standard. Standard deviation data sets are plotted and dispersed around a bell curve, which is a symmetrical curve that represents the distribution, values, and frequencies in a set of data. A normal distribution of data means that the numbers in the standard deviation's data set are close to the mean.

One standard deviation from the mean (red area) on the x-axis usually accounts for about 68% of the data set. Two standard deviations from the mean (green area) usually accounts for about 95% of the data set. Likewise, three standard deviations from the mean (blue area) usually accounts for about 99% of the data set. Lastly, four deviations from the mean would be the white area.

Learning Outcomes

Knowing the contents of this lesson could enable you to do the following:

Define standard deviation, bell curve and normal distribution

Explain why a standard deviation is the square root of the variance

Plot and interpret standard deviation around a bell curve

Did you know… We have over 200 college
courses that prepare you to earn
credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the
first two years of college and save thousands off your degree. Anyone can earn
credit-by-exam regardless of age or education level.

Not sure what college you want to attend yet? Study.com has thousands of articles about every
imaginable degree, area of
study
and career path that can help you find the school that's right for you.

Research Schools, Degrees & Careers

Get the unbiased info you need to find the right school.

Study.com video lessons have helped over 30 million
students.

Students Love Study.com

"I learned more in 10 minutes than 1 month of chemistry classes"

- Ashlee P.

Students Love Study.com

"I learned more in 10 minutes than 1 month of chemistry classes"

- Ashlee P.

Earn College Credit

"I aced the CLEP exam and earned 3 college credits!"

- Clair S.

Family Plan Includes

Free parent account

Add one or more paid student subscriptions

View individual student lesson progress

Monitor quiz scores

Receive weekly email status updates

Over 65 million users have prepared for
and other
exams on Study.com

Teachers Love Study.com

"The videos have changed the way I teach! The videos on Study.com accomplish in
5 minutes what would take me an entire class."

- Chris F.

Teachers Love Study.com

"It provides a quick and engaging way to cover material needed to understand readings we are covering in class."

Teresa P.

Ohio, United States

"It provides a quick and engaging way to cover material needed to understand readings we are covering in class."

Teresa P.

Ohio, United States

"A teacher friend recommended Study.com for social studies. I enjoy assigning the videos to my students. The videos are short, to the point, and the quiz allows me to test their knowledge on whatever subject in social studies I am teaching at the time."

Nancy A.

Ohio, United States

"Every time I have searched for a lesson, there has been a perfect match to my needs as a middle school teacher of science, and algebra."

Kathy S.

New Jersey, United States

"Your lessons are very well developed, especially the videos that use analogies for scientific phenomena. Great way to memorize science concepts."

Lusy D.

California, United States

"I love the way the lessons are laid out in small chunks with quizzes to make sure you understand a concept before moving on. Excellent!"

Brandy K.

"I am a 7th-grade teacher and often use it for language arts and world history. The students find it quite engaging. On a professional note, it has helped me pass 2 out of the for 4 Single Subject CSET English Exams! Now I am using it to help me pass the last 2 subtest exams."

Scott S.

California, United States

"As a math/science tutor I find these lessons extremely helpful when introducing concepts to my students or reinforcing what they have been taught."

Tim H.

Barbados

"I like that students can retake quizzes until they achieve a perfect score. I also like the
ability to create "guided note templates" from the transcripts of each video lesson."

Jaime B.

Teacher, High School 9-12 Computer Science

West Plains, MO

Family Plan Includes

Free parent account

Add one or more paid student subscriptions

View individual student lesson progress

Monitor quiz scores

Receive weekly email status updates

Over 65 million users have prepared for
and other
exams on Study.com

Study.com video lessons have helped over 500,000
teachers engage their students.

Just a few seconds while we find the right plan for you