Login

The Distributive Property and Algebraic Expressions

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Combining Like Terms in Algebraic Expressions

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
 Replay
Your next lesson will play in 10 seconds
  • 0:05 Distribution
  • 0:47 Distributive Property
  • 2:17 Practice Problems
  • 4:37 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Login or Sign up

Timeline
Autoplay
Autoplay
Create an account to start this course today
Try it free for 5 days!
Create An Account
Lesson Transcript
Instructor: Jeff Calareso

Jeff teaches high school English, math and other subjects. He has a master's degree in writing and literature.

The order of operations is great. But sometimes we need to bend the rules to simplify an equation. Fortunately, the distributive property gives us a scenario in which this is okay. Learn all about it in this lesson.

Distribution

What do you think of when you hear the term 'distribution center'? I think of the mail. When you mail a letter or a package, you might bring it to the post office or put in a mailbox. People all over your town are doing the same thing. All the items from your town get collected and go to a distribution center.

Once they're there, they get sorted and distributed into different trucks depending on where they're going. Then they leave the distribution center and head off to other parts of your town, your state, or even other parts of the world.

The distribution center is the place where everything is organized into logical groups. All the mail for Wyoming goes in one place, and all the mail for Japan goes in another. And this is essentially what the distributive property is all about.

Distributive Property

The distributive property is a handy math rule that says when you are multiplying a term by terms that are being parenthetically added, you can distribute the multiplication across both terms, then sum their products.

That was totally confusing, I know. The distributive property is much easier to show, and it's much simpler than it sounds. Think of it this way: a(b + c) = (ab) + (ac).

Let's prove it with real numbers. If we have 5(3 + 4), the order of operations tells us we start with the parenthesis. So we do 3 + 4 = 7, get 5(7) and then end up with 35. That's all well and good. But the distributive property tells us that in this situation, we can instead do (5 * 3) + (5 * 4), where we distribute the 5 across the parenthesis. Does it work? We get 15 + 20. Is that still 35? Yep. It is.

For most purposes, the distributive property is limited to multiplication. And while I said that the parenthetical terms must involve addition, remember that something like (7 - 2) is really just (7 + (-2)), so this rule still works.

If you're wondering why (5 * 3) + (5 * 4) is in any way easier than 5(7), well, it isn't really. It would help to look at some examples of when this is particularly helpful.

Practice Problems

What if you can't add what's inside the parentheses? Look at this one: 7(3x + 5y). You can't simplify 3x + 5y. But you can distribute the 7 and get 21x + 35y. In fact, that's when you'll most often use this rule - when you have variables.

Here's another one: -5(6 + 2x) Don't forget that negative sign. If we distribute the -5, we get -5 * 6, which is -30, and -5 * 2x, which is -10x. Put that together and our simplified expression is -30 - 10x.

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?
I am a teacher

Unlock Your Education

See for yourself why 30 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back

Earning College Credit

Did you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it free for 5 days!
Create An Account
Support