Transformations: How to Shift Graphs on a Plane

Lesson Transcript
Instructor: Luke Winspur

Luke has taught high school algebra and geometry, college calculus, and has a master's degree in education.

What is a transformation? Well, it's something that transforms one function into another! To see what I mean and how that looks, check out this lesson!


Translations slide the function around
Translation Graph

A lot of people are of the opinion that math doesn't make any sense. Some of my students even seem to think that long ago, we mathematicians met in a secret chamber somewhere and came up with all these crazy rules for no good reason other than to drive people crazy. While I can assure you that this is not the case, I do understand why people can feel this way. Teaching things like 50 = 1 does make it especially hard for me to defend my position that math isn't there purely for us teachers to laugh at you when you mess up.

But maybe this will help! It's a topic where we picked a word that accurately describes what it means in math. Transformations kinda, like, transform! You don't have to be an English scholar to know that this word implies one thing changing into another thing. Kinda like how a Camaro can transform into a big evil fighting robot, a mathematical function can transform into... a different mathematical function! Not as cool as the robot, I know, but at least it's simple. If it was transforming into a robot, I bet the math would be way harder.

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: What Is Domain and Range in a Function?

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:04 Transformations
  • 1:14 Types of Transformations
  • 1:47 Translations
  • 6:13 Lesson Summary
Save Save Save

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Speed Speed

Types of Transformations

Anyways, let's take a look at a few of the different kinds of transformations that we can have in math. First off we've got rotations. These simply take a function, maybe this one, and rotate it! We can also have reflections. These are transformations that act like a mirror and reflect a function to a new place, maybe like this,


Graph of the function f(x - 5) + 3 from example #1
Translation Graph Example 1


But the fourth and final transformation, called a translation, is the kind we'll focus on for this lesson. Translations simply slide the function around, maybe taking a function like this


First the shift up: it looks like the new graph is three units higher than the original one. Let's see if we can make our original graph turn into this one. If we can do that, we'll be halfway and can then focus on getting it to slide over as well. Okay, so notice that this graph is really exactly the same except every point is three higher than it used to be. That means all we want to do is make every answer three more than it used to be. Instead of f(0), we want f(0) + 3. Instead of f(-2) we want f(-2) + 3. That means that, instead of f(x), we want f(x) + 3.

Cool! Now that we've gotten the function up here, let's try to slide it over to the right. But now that point needs to be five spots over to the right. So what I used to get when I plugged in 0, I now need to get when I plug in 5. So how can we plug in 5 and end up with 0? Well, what about making the function, instead of f(x), f(x - 5)? That way, when I plug in 5, I actually get f(0), which we know gives me the point I wanted. So that means that f(x) + 3 on the outside shifts it up three, but then doing f(x - 5) on the inside is actually going to shift it five to the right. That means this final graph over here must be f(x - 5) + 3.

The -3 causes a downward shift of the graph in example #2
Translation Graph Example 2

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it now
Create an account to start this course today
Used by over 30 million students worldwide
Create an account