Back To Course

UExcel Physics: Study Guide & Test Prep18 chapters | 201 lessons | 13 flashcard sets

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Try it risk-freeWhat teachers are saying about Study.com

Already registered? Log in here for access

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*David Wood*

David has taught Honors Physics, AP Physics, IB Physics and general science courses. He has a Masters in Education, and a Bachelors in Physics.

After watching this lesson, you will be able to answer questions on mirrors, stating whether an image is real or virtual, upright or inverted, and larger or smaller. A short quiz will follow.

When you stand in front of a mirror, an image of you is created. You use this image to fix your hair, to put on make-up, or get an eyelash out of your eye. Those images are incredibly useful. And for a plane mirror, we all have a pretty good idea what that image will look like from experience.

But not all mirrors are flat. Convex and concave mirrors can produce images that are bigger than you, smaller than you, upright or inverted, and images that could either be **real** (images that form in front of the mirror so you can project onto a screen or blank piece of paper), or **virtual** (images that form behind the mirror so you can't project it onto a screen).

A regular, flat mirror creates an image that's the same size as you, virtual (behind the mirror), and upright. But for more complex mirror situations, we need to find ways to predict what the image will be like. One way we can do that is by carefully drawing ray diagrams with everything perfectly to scale. But a quicker and often more useful way is to use the power of math!

When it comes to mathematically figuring out what an image will look like, there are two main equations we need to use. The first is called the spherical mirror equation. It looks a lot like the thin lens equation, but for mirrors. Although, the terms are in slightly different places. It says that one over the object distance plus one over the focal length of the mirror is equal to one over the image distance. Just like with the thin lens equation, which is explored in more detail in another lesson, there are important sign conventions we need to know and use.

A positive focal length, *f*, represents a **concave (or converging) mirror** that brings light rays closer together. A negative focal length, *-f*, represents a **convex (or diverging) mirror** that spreads light rays further apart. The object distance is always negative because it's always behind the mirrored surface. But the image distance is positive if the image is real (formed in front of the mirror) and negative if the image is virtual (formed behind the mirror). These sign conventions are extremely similar to those used for the lens equation. The distances can be measured in meters or centimeters, whatever is convenient, as long as you use the same units for all your numbers.

By plugging numbers into the spherical mirror equation we can figure out where the image forms from left to right on our ray diagrams. We can, therefore, state whether an image is real or virtual. So, that's one of our three questions answered.

To figure out if the image is bigger or smaller and if it's upright or inverted, we need to use the magnification equation. This equation says that the magnification factor, *M* (for example, 3 for 3 times as big, or 0.5 for half as big), is equal to the image height, *hi*, divided by the object height, *ho*, which is equal to the image distance divided by the object distance. The image distance and the object distance follow the same sign convention as in the mirror equation. But now we also have a sign convention for the heights of the image. A positive image height represents an upright image, whereas a negative image height suggests an inverted image.

So, by using the magnification equation, we can figure out if the image is bigger or smaller by getting a number for the magnification. And, we can figure out if the image is upright or inverted by calculating the image height and looking at whether it has a positive or negative sign.

Such an equation heavy lesson definitely needs an example. Let's say you're stood in front of a spherical fun-house mirror, and your height is about 1.25 meters. The part of the mirror you're looking at is concave and has a focal length of 1.5 meters. If you stand at a distance of 2 meters away, is the image of you (a) real or virtual, (b) larger or smaller, and (c) upright or inverted?

Okay, so with any physics problem, the first thing we should do is write down what we know. We know that the focal length, *f*, of the mirror is 1.5 meters, and the object distance, *do*, is 2 meters. So, we want to know *di* to figure out if it's real or virtual, and we want to know *M* to see if it's larger or smaller. Last of all, we'll need to find *hi* to see if the image is upright or inverted.

So, let's start by using the mirror equation to calculate *di*. (1 / -2) + (1 / 1.5) = (1 / *di*). Just to be clear, it's -2 because with mirrors the object is always in front of the mirror, and it's positive 1.5 because it's a concave mirror. Plug numbers in, and we get 1/*di* = 1/1.5 + 1/-2. Take the reciprocal of both sides and solve.

This gives us an image distance of 6 meters. So, our image is 6 meters in front of the mirror - in front because it's a positive number. If the image forms in front of the mirror, if the number is positive, then it's a real image. So, that's the answer to part (a).

Next, we need to see if it's larger or smaller. The magnification, *M*, is equal to the image distance divided by the object distance. 6 / -2 gives us -3. So, the image is 3 times the size of you. Or, in other words, the image is larger. That's the answer to part (b).

Last of all: upright or inverted? Now that we know the magnification, we can use the other part of the magnification equation to find the image height. The magnification, -3, equals the image height, which we're trying to find, divided by the object height, which is 1.25. So, the image height comes out as -3.75. And since this is a negative number, the image is inverted. That gives us our answer to part (c). So, the image is real, larger, and inverted.

Mirrors form images. If we want to be able to predict what those images will look like, we either need to draw a perfectly to scale ray diagram or use a series of equations. Whatever we use, the main things we need to know are is the image **real** or **virtual**, is the image upright or inverted, and is it larger or smaller than the object?

By using the equations and making sure to follow the sign conventions carefully, we can figure out all these things. The mirror equation looks like the equation on top, and says that one over the object distance plus one over the focal length of the mirror is equal to one over the image distance. The magnification equation looks like the one on bottom, and says that the magnification factor, *M* (for example 3 for 3 times as big, or 0.5 for half as big), is equal to the image height, *hi*, divided by the object height, *ho*, which is equal to the image distance divided by the object distance.

To figure out if the image is real or virtual, calculate the image distance: a positive image distance means the image is real, and a negative one means it's virtual. To figure out if the image is larger or smaller, calculate the magnification: a magnification bigger than 1 means the image is larger and a magnification smaller than 1 means it's smaller. And, last of all, to calculate if the image is upright or inverted, calculate the image height: if it's positive, then the image is upright, and if it's negative, then it's inverted.

All the signs can be very confusing, but if you take good notes and follow the conventions religiously, you should be able to solve any problem that comes your way.

You'll have the ability to do the following after this lesson:

- Summarize the appearance of images produced by regular and more complex mirrors
- Identify the mirror and magnification equations
- Explain how to determine whether an image is real or virtual, upright or inverted, and larger or smaller than the object
- Describe the sign conventions to use when making these determinations

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackWhat teachers are saying about Study.com

Already registered? Log in here for access

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
3 in chapter 15 of the course:

Back To Course

UExcel Physics: Study Guide & Test Prep18 chapters | 201 lessons | 13 flashcard sets

- Go to Vectors

- Go to Kinematics

- Mirrors: Difference Between Plane & Spherical 4:20
- Ray Tracing with Mirrors: Reflected Images 4:21
- Using Equations to Answer Mirror Questions 7:22
- Using Equations to Answer Lens Questions 6:01
- Polarization of Light & Malus's Law 5:25
- Polarization by Reflection & Brewster's Law 6:21
- Diffraction & Huygen's Principle 5:42
- Single-slit Diffraction: Interference Pattern & Equations 6:04
- Double-slit Diffraction: Interference Pattern & Equations 7:47
- Multiple-slit Diffraction: Interference Pattern & Equations 5:35
- How Thin Film Interference Works 7:48
- Michelson Interferometer: Applications 5:14
- Go to Wave Optics

- Go to Relativity

- SIE Exam Study Guide
- Indiana Real Estate Broker Exam Study Guide
- Grammar & Sentence Structure Lesson Plans
- Foundations of Science Lesson Plans
- Career, Life, & Technical Skills Lesson Plans
- Business Costs, Taxes & Inventory Valuations
- Using Math for Financial Analysis
- Assessments in Health Education Programs
- Governmental Health Regulations
- Understanding Health Education Programs
- AFOQT Prep Product Comparison
- ACT Prep Product Comparison
- CGAP Prep Product Comparison
- CPCE Prep Product Comparison
- CCXP Prep Product Comparison
- CNE Prep Product Comparison
- IAAP CAP Prep Product Comparison

- How to Copy Data Between Tables in MySQL Databases
- Addition & Subtraction of Rational Exponents
- How to Write an Abstract for a Presentation
- Social Media Responsibility & Etiquette
- Requirements for Indiana Real Estate Advertising & Commissions
- High School Entrepreneurship Project Ideas
- Seed Dispersal Project Ideas
- Quiz & Worksheet - Eccentricity of Conic Sections
- Quiz & Worksheet - Finding the Period of Sine Functions
- Quiz & Worksheet - COSO Internal Control Framework
- Quiz & Worksheet - Graphs & the Constant of Proportionality
- Analytical & Non-Euclidean Geometry Flashcards
- Flashcards - Measurement & Experimental Design
- Precalculus Worksheets
- Common Core English & Reading Worksheets & Printables

- Technical Writing Syllabus Resource & Lesson Plans
- MCAT Test: Practice and Study Guide
- High School World History: Help and Review
- Financial Accounting: Help and Review
- Quantitative Analysis for Teachers: Professional Development
- ASVAB Math: Rounding Numbers and Decimals
- Prentice Hall World History Review Part III: Regional Civilizations
- Quiz & Worksheet - Alcohol Use in the US
- Quiz & Worksheet - Characteristics of Chordates
- Quiz & Worksheet - Practice with Velocity & Acceleration
- Quiz & Worksheet - Characteristics of Specialty Stores
- Quiz & Worksheet - Drug Interactions

- Chemical Bonds: Ionic vs. Covalent
- Cumulonimbus Clouds: Lesson for Kids
- How to Pass a Writing Test
- Aerospace Engineering Scholarships for High School
- Pennsylvania Homeschool Laws
- Indiana Science Standards
- What is a College Deferral Letter?
- What is the NAPLAN?
- High School Interview Questions & Tips
- How Long Does it Take to Learn Spanish?
- Corporate Team Building Activity Ideas
- California Biology Standards for High School

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject