# Vertical Velocity: Definition & Equation

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: What is a Newton? - Units & Explanation

### You're on a roll. Keep up the good work!

Replay
Your next lesson will play in 10 seconds
• 0:01 Definition of Vertical…
• 1:34 Calculating Vertical Velocity
• 3:02 Lesson Summary
Save Save

Want to watch this again later?

Timeline
Autoplay
Autoplay
Speed Speed

#### Recommended Lessons and Courses for You

Lesson Transcript
Instructor
Richard Cardenas

Richard Cardenas has taught Physics for 15 years. He has a Ph.D. in Physics with a focus on Biological Physics.

Expert Contributor
Wiley Iverstine

Wiley Iverstine holds masterâ€™s degree in natural science from Louisiana State University and spent 27 years teaching DE, AP, Regular & Honors Chemistry/Physics.

In this lesson we will look at vertical velocity and why it is very different from horizontal velocity. You will learn the equation used to calculate vertical velocity and learn to apply it to a few situations.

## Definition of Vertical Velocity

You go skydiving, and after hurling yourself from an airplane, you deploy the parachute. You throw a ball upward and catch it as it falls back down. These are examples of situations that involve vertical velocity.

First, let's define velocity. Velocity is a mathematical quantity that tells us how fast your position is changing. For instance, if you move 30 meters in 10 seconds, then your velocity is 30 meters divided by 10 seconds, or 3 meters a second. Velocity is a vector quantity, so we must specify the magnitude of the velocity, which indicates the size, and the direction of the velocity, which indicates where it is going. In one-dimensional motion, the magnitude is just how big the rate of change is, for example, 30 meters a second. The direction is denoted by a plus (+) sign for up and right directions, and a minus (-) sign for down and left directions.

Vertical velocity is a special type of velocity because in the vertical direction, it is always affected by acceleration due to gravity. Any object thrown up, thrown down, or dropped in the vertical direction is affected by this acceleration, which has a magnitude of about 10 meters/second/second, or 10 meters/second squared, directed downward, toward the center of the earth. The saying 'what goes up must come down' is a perfect description of vertical velocity. The gravity of the earth will cause objects to fall back down to the earth at a rate of about 10 meters/second/second.

## Calculating Vertical Velocity

Take a look at this formula for calculating vertical velocity.

Calculating vertical velocity is a bit different than calculating general and horizontal velocity, because of the acceleration due to gravity, which is denoted by the letter 'g' in the equations. Whenever you see 'g' in an equation, it refers to 10 meters/second/second. In order to calculate the vertical velocity of an object at any time 't', we need to know the initial velocity and the time of interest.

To unlock this lesson you must be a Study.com Member.

## Understanding Acceleration of Vertical Velocity

If an object is launched vertically away from the Earth, it will slow down as it moves upward. Eventually it will come to a complete stop. The object will only be at rest momentarily as it then begins to fall in the opposite direction back toward the center of the Earth. Because the object is constantly changing velocity, slowing down as it moves upward and speeding up as it moves back downward, we say that it is constantly accelerating. Remember that acceleration is a change in velocity. But what about the moment when it comes to rest at the top of its motion; how can we say that it is accelerating if for that moment it is not moving? The answer can be seen in two ways:

a. The cause of acceleration is a net force. As long as the net force is acting on an object it will accelerate, or an object will only accelerate because there's a net force on it. What is the cause of acceleration for an object displaying Vertical Velocity? The answer is gravity pulling it down toward the center of the Earth. Inside we said that objects that are displaying vertical are in free fall which means ignoring air resistance the only force on the object is gravity pulling downward. So the only force on an object is gravity pulling downward then gravity is a net force on the object during its entire motion. As long as there's a net force on the object there will be acceleration. Acceleration is always in the direction of the net force. So gravity, being the net force, is constantly pulling downward then the acceleration will be constant and always be downward, even when is momentarily at rest.

b. A second way to understand how an object can accelerate when it is at rest even though it's not moving, is to question what would happen to it if it didn't accelerate? Remember that acceleration is a change in velocity. When the object is momentarily at rest if it does not change its velocity, what will it continue to do? If an object is at rest and does not change, it will stay at rest. Does the object in Vertical Velocity stay at rest at the top of its motion? The answer is no; it continues to change its motion and begins to fall back toward the Earth.

So as long as a net force is acting on the object the object will continue to accelerate in the direction of the net force.

### Register to view this lesson

Are you a student or a teacher?

#### See for yourself why 30 million people use Study.com

##### Become a Study.com member and start learning now.
Back
What teachers are saying about Study.com

### Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.