Volume of Cylinders, Cones, and Spheres

Volume of Cylinders, Cones, and Spheres
Coming up next: What is Area in Math? - Definition & Formula

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
 Replay
Your next lesson will play in 10 seconds
  • 0:05 What Is Volume?
  • 0:33 Cylinders
  • 2:30 Cones
  • 4:16 Spheres
  • 7:14 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Timeline
Autoplay
Autoplay
Speed

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Jeff Calareso

Jeff teaches high school English, math and other subjects. He has a master's degree in writing and literature.

In this lesson, we'll learn about the volume formulas for cylinders, cones and spheres. We'll also practice using the formula in a variety of real-world examples where knowing how to calculate volume is helpful.

What Is Volume?

Have you ever watched an eating contest? It can be kind of gross. But, what always amazes me is when seemingly skinny people win. How can someone fit so much food into such a tiny stomach? It's a question of volume. Volume is the capacity of an object, or how much space it occupies. An eating contest tests the volume of the human stomach. In this lesson, we're not going to test the limits of anyone's stomach, but we are going to learn about the volume formulas for some common shapes.

Cylinders

A cylinder is basically like a big pile of circles. Imagine you have a poker chip. Then, you start winning, and you have a bunch of chips. If you stack them together, you've created a cylinder. This should help you remember the volume formula.

The volume of a cylinder is pi*r^2*h, where r is the radius of the circle on the cylinder's end. What looks familiar in there? Pi*r^2 - that's the area of a circle. And, if you had just one perfectly flat poker chip, its area would be pi*r^2. But, since you're a baller, you have a stack. So, you take the area formula, and you multiply it by the height of your chips.

Let's try some examples. Below is a can of a new soda, MegaSurge. Not only is the neon yellow soda packed with 10 times the caffeine of regular soda, it also comes in an oversized can. But, how much soda does it hold? You measure the width of the top, which is the diameter of the circle, and it's 6 inches. So the radius, which is half the diameter, is 3 inches. And, how tall is it? 9 inches. Let's use our volume formula: pi*r^2*h. Pi*3^2*9. That's about 254 cubic inches. That's a lot of soda!

You can use the volume formula for a cylinder to find the volume for this can of soda.
can for volume example

Okay, here's another. After drinking that soda, you decide you need to get back to more healthy foods, so you visit your aunt's farm for some fresh veggies, eggs and other good stuff. She has a grain silo. You want to know how tall it is. She tells you it holds 3,141 cubic feet of grain when full. So, you know its volume. And, the radius is 5 feet. How tall is it? Let's use our formula! 3141 = pi*5^2*x. 3141 = 79x. x = 40, so it's about 40 feet tall.

Cones

As it turns out, your aunt uses that grain to feed her cows, and she uses her cows' milk to make ice cream. Your aunt is kind of awesome. And, now you want to know how much ice cream you can pack into your cone. The more ice cream you can pack into the cone, the happier you'll be if the scoop on top should fall off or, you know, gets eaten too quickly.

The volume of a cone is 1/3*pi*r^2*h, where r is the radius of the circle at the wide end of the cone. Notice how this is the same as the cylinder formula. There's just that extra 1/3. What's that for? Well, one end is a circle and one is a point. So, there is 1/3 of the volume of a cylinder. In other words, you'd need 3 cone-shaped cones to match the volume of 1 cylinder-shaped cone. Maybe those people with the cake cones are onto something.

But, let's talk about the cone you have. It's 5 inches tall and 2 inches across the top. Remember, that 2 inches is the diameter. That means the radius is 1 inch. Okay, the formula: 1/3*pi*r^2*h. That's 1/3*pi*1^2*5, which equals a little over 5 cubic inches. That's not a lot of ice cream.

So, you convince your aunt to make waffle cones, which are bigger, but how much bigger? You make a waffle cone that's 8 inches tall and 5 inches across the top. So, its radius is 2.5 inches. What is the volume it can hold? 1/3*pi*r^2*h. That's 1/3*pi*2.5^2*8, or just over 52 cubic inches. That's about 10 times the ice cream! That's a big waffle cone.

To unlock this lesson you must be a Study.com Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back
What teachers are saying about Study.com
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create An Account
Support