What Are Ionic Compounds? - Definition, Examples & Reactions

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Anabolism and Catabolism: Definitions & Examples

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:07 Ionic Compounds
  • 2:04 Ionic Compounds are Balanced
  • 3:53 Structure of Ionic Compounds
  • 5:58 Lesson Summary
Save Save Save

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Speed Speed

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Sarah Friedl

Sarah has two Master's, one in Zoology and one in GIS, a Bachelor's in Biology, and has taught college level Physical Science and Biology.

Ionic compounds are a common, yet special type of chemical compound. In this video lesson, you will learn about their formation and structure and see examples of compounds formed by ions.

Ionic Compounds

Each atom is unique because it is made of a specific number of protons, neutrons, and electrons. Usually, the number of protons and electrons is the same for an atom. And while the number of protons will never change for any atom, because this would mean you have a completely different element, sometimes the number of electrons does change. When an atom gains or loses an electron, we get an ion. Since electrons themselves have a net negative charge, adding or removing electrons from an atom changes the charge of the atom. This is because the number of electrons is no longer in balance with the number of protons, which have a positive charge.

Atoms that gain electrons and therefore have a net negative charge are known as anions. Conversely, atoms that lose electrons and therefore have a net positive charge are called cations. Cations tend to be metals, while anions tend to be non-metals. Ions may also be single atoms or multiple, complex groups of atoms.

When we talk about ions, it's true that opposites attract. The opposite negative and positive charges of the ions hold together in ionic bonds, forming ionic compounds, which are just what they sound like: compounds made of ions. The loss or gain from one atom matches the loss or gain of the other, so one atom essentially 'donates' an electron to the other atom it pairs up with.

Think of the pairing of ions like two bar magnets. If you try to put the two north or south ends of different magnets together, they repel each other very strongly; but turn one of those magnets around so that you are putting a south end to a north end, and they quickly snap together. Ions behave similarly. Two positive or two negative ions will not join together because they have the same charge. But one positive and one negative will happily join together to make an ionic compound.

Ionic Compounds Are Balanced

Table salt is an example of an ionic compound. Sodium and chlorine ions come together to form sodium chloride, or NaCl. The sodium atom in this compound loses an electron to become Na+, while the chlorine atom gains an electron to become Cl-. Together, they form a neutral compound because the ions balance each other out. This is true for all ionic compounds - the positive and negative charges must be in balance.

Potassium oxide, or K2O, is another example of an ionic compound. You may have noticed that unlike the sodium chloride example, which has one sodium ion for each chlorine ion, this time there are two potassium atoms for each oxygen. This is because the charges have to be balanced for the ionic compound. All you have to do to determine how many of each ion will be in the compound is take a quick look at the periodic table.

Let's start with our table salt, the sodium chloride. Sodium is in the first column of the periodic table, so it will lose one electron. Chlorine is in the second-to-last column, so it will gain one electron. Each atom in this ionic compound will lose or gain one electron, so they can pair up in a one-to-one ratio.

Now let's go back to potassium oxide. Potassium is in the first column, so it will lose one electron and have a net positive charge. Oxygen, however, is in one column over from where we found chlorine, so it will gain two electrons. This means that in order for potassium oxide to have a net charge of zero, we need two potassium atoms, each with their net positive charge of one to match up with the oxygen that has a net negative charge of two.

Structure of Ionic Compounds

Ionic compounds are special because they form lattice or crystalline structures. This formation comes from the ionic bonds that hold the ions together in the compound. Ionic bonds are very strong, which makes them difficult to break apart. Because of this, ions tend to have higher boiling and melting points. If you think about this, it makes sense because melting and boiling are two ways that we can break bonds within molecules.

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create an account