Back To Course

Math 104: Calculus14 chapters | 116 lessons | 11 flashcard sets

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Try it risk-freeWhat teachers are saying about Study.com

Already registered? Login here for access

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Zach Pino*

Mapping numbers sounds complex, but we do it when we buy gasoline. We pump gasoline, and the gas station charges us based on the amount of gas that we pump. Learn how this relates to functions while reviewing the basics and notations in this lesson.

Would it surprise you to know that one of the most important pillars of calculus is something that you use every day? **Functions** are fundamental to calculus, but you have been using them your entire life. Formally, functions map a set of numbers to another set of numbers. So what does this mean?

Say we have a black box, and we're going to call this our function. If you put in the number 4, you might get out the number 8. If you put in the number 5, you might get out the number 16. For each number that you put in, say *x*, you'll get out another number, say *y*. Now sometimes you can put in two different numbers - let's say 4 and 22 - and get out the same number, say 39. But at no point in time will you put in one number and get two different numbers out. This may sound complex, but it's really just saying stuff you already know.

For example, you use functions every time you go to the gas station. The amount of money that you pay a gas station depends on the amount of gas that you pump. Put another way, the amount of gas that you pump determines the number of dollars that you pay. Let's say gas is $3.80 a gallon. If you're going on a long road trip, you might need 10.2 gallons. If you pump 10.2 gallons and gas is $3.80 a gallon, the gas station is going to charge you $38.76. If you're just running across town and only need 2.3 gallons, the gas station is only going to charge you $8.74. Of course, depending on your car, you may need more or less gas, and the station is going charge you based on the amount of gas that you take.

How they determine the amount to charge is very simple. They use a function that maps the number of gallons that you pump to the number of dollars that you need to pay. Specifically, we say that number of dollars you pay is a function of the amount of gas you buy.

You know the number of gallons that you're going to buy; you know an ** x variable**. This is your independent variable. What you want to know is the amount of dollars that you're going to pay, the

In the case of our gas station, we really know what the function is. We go to the gas station and pump some amount of gas. Because you've probably gone to the gas station before, you know that the number of dollars that you're going to pay is equal to the amount of gas that you pumped times the price per gallon. So if gas is $4 per gallon, then we write *y* is equal to 4 times our input, which is the number of gallons we pump: *y*=4*x*. If we pump 4 gallons of gas, we plug this into our function, 4 * 4, and that's 16. We would owe $16. So an important point here is that when we say *y*=*f(x)*, that's good for any value of *x*. We're using *x* as a variable here. If we say *y*=*f*(5), we're evaluating this function using *x*=5.

Imagine going to the gas station, and instead of pumping 4 gallons of gas and owing $16, you try to give gas back to the gas station. Now I don't know about you, but when I've tried to do that, the gas station attendant usually just laughs at me, because he and I both know that the amount of gas that I can pump (the input to our function) has to be greater than zero. The minimum amount of gas I can pump is zero, and if I go to the gas station and pump zero gallons of gas, the gas station just gets annoyed. But there is no maximum amount, practically speaking. The output of our function will be between zero and infinity.

All possible inputs to our function is known as the **domain**. The domain are those values that you can put as input (as the *x* variable) into the function.

The output - all possible values that you can get out of your function - are known as the **range**. In this case, the range is the amount of dollars that you could expect to spend at the gas station.

So if I go back to the black box, we're going to write our function a little more formally now as *y*=*f(x)*. The inputs to our black box are now the *x* values that make up the domain, and the output - something within the range - are our *y* values. Mathematicians will sometimes write like this, where now you've got basically two sheets of paper, in a sense, facing one another. On one side you have a domain - you have a function - and the second sheet of paper is the range.

What about the function sine of *x*? The function sin(*x*), I will write as *y* is some function of *x* and that function is actually sin(*x*), so *y*=sin(*x*). What about the domain and range of this function? The domain are all possible values of *x* that you can put into this. If you go your calculator, you know that you can put anything into sin(*x*), so the domain is all values from minus infinity to infinity. What about the range? Well the range is all possible values of *y*. If we graph sin(*x*), you can pretty easily see that the maximum value is going to be 1 and the minimum value is going to be -1.

So writing *y*=sin(*x*), we know that *y* has to be between -1 and 1. That means that the range of sin(*x*) is going to be between -1 and 1. So the range corresponds to the *y* value, this vertical axis, and the domain corresponds to the *x* values, this horizontal axis. One last thing: What about the domain and range of this function?

First, let's take a look at what this function means. What this means is for values of *x* that are less than zero, our function, *f(x)*, equals sin(*x*). If I graph this out, anything that's less than zero is going to be sin(*x*); it's going to continue on. For values of *x* that are greater than zero, *f(x)* is going to be equal to *x*, so it's going to look like this. An important point to note here is that there is no value assigned at *x*=0, so I'm going to put a circle there because it's undefined.

To recap, ** functions** map some set of numbers to another set of numbers, but this is no more complex than going to the gas station. Your input to your function, your ** x variable**, is the independent variable, and

For many people, math is a complex foreign language. However, many of its concepts are used in our day to day lives without us ever realizing that we are applying it. When we map out two sets of numbers, like we do when we buy something by the pound or gallon, we are creating a function. Those numbers can be displayed on graph and connected with a line to provide a visual example of how the number sets pair together.

After reviewing this lesson, you should be able to:

- define and describe a function and other related terms.
- demonstrate how to make a function and apply it to a graph.

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackWhat teachers are saying about Study.com

Already registered? Login here for access

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
1 in chapter 1 of the course:

Back To Course

Math 104: Calculus14 chapters | 116 lessons | 11 flashcard sets

- What is a Function: Basics and Key Terms 7:57
- Compounding Functions and Graphing Functions of Functions 7:47
- Understanding and Graphing the Inverse Function 7:31
- Polynomial Functions: Properties and Factoring 7:45
- Polynomial Functions: Exponentials and Simplifying 7:45
- Exponentials, Logarithms & the Natural Log 8:36
- Slopes and Tangents on a Graph 10:05
- Equation of a Line Using Point-Slope Formula 9:27
- Horizontal and Vertical Asymptotes 7:47
- Implicit Functions 4:30
- Go to Graphing and Functions

- Go to Continuity

- Go to Limits

- Computer Science 109: Introduction to Programming
- Introduction to HTML & CSS
- Introduction to JavaScript
- Computer Science 332: Cybersecurity Policies and Management
- Introduction to SQL
- Early Civilizations & The Ancient Near East
- Fundamental Overview of World War I
- The Virginia Dynasty & Jacksonian America
- 1920's America and the Great Depression
- Building the United States After the American Revolution
- CEOE Test Cost
- PHR Exam Registration Information
- Claiming a Tax Deduction for Your Study.com Teacher Edition
- What is the PHR Exam?
- Anti-Bullying Survey Finds Teachers Lack the Support They Need
- What is the ASCP Exam?
- ASCPI vs ASCP

- Subtraction in Java: Method, Code & Examples
- Hydrogen Chloride vs. Hydrochloric Acid
- Extraction of Aluminum, Copper, Zinc & Iron
- Iroquois Culture, Traditions & Facts
- Noun Clauses Lesson Plan
- Adverb of Manner Lesson Plan
- Timeline Project Ideas for High School
- Quiz & Worksheet - Multi-Dimensional Arrays in C
- Quiz & Worksheet - What is a Diastereoisomer?
- Quiz & Worksheet - Mauryan Empire Art & Culture
- Quiz & Worksheet - What is a Convergent Sequence?
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies
- 5th Grade Math Worksheets & Printables
- Reading Comprehension Strategies & Resources for All Teachers

- 7th Grade Earth Science: Enrichment Program
- Human Resource Management Syllabus Resource & Lesson Plans
- Foundations of Education Syllabus Resource & Lesson Plans
- Life Span Developmental Psychology: Homework Help Resource
- NY Regents Exam - Geometry: Tutoring Solution
- The US Judicial Branch - MTEL Political Science/Political Philosophy
- ScienceSaurus Student Handbook Grades 6-8: Scientific Numbers
- Quiz & Worksheet - Ancient Greek Sculpture
- Quiz & Worksheet - Types of Writing for Self-Expression
- Quiz & Worksheet - Ethos in Writing
- Quiz & Worksheet - Perseus and Medusa in Greek Mythology
- Quiz & Worksheet - Function Operation

- De Jure Segregation: Definition & Examples
- Comparing Information Presented Through Different Mediums
- How to Save for College
- How to Learn French
- Best Online College English Courses
- How to Learn Accounting
- Short Story Writing Prompts
- How to Ace a College Interview
- What is Asthma Educator Certification?
- How to Ace a Second Interview
- Free English Language Courses
- How to Pass the Algebra Regents Exam

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject