Back To Course

Math 102: College Mathematics15 chapters | 121 lessons | 13 flashcard sets

Watch short & fun videos
**
Start Your Free Trial Today
**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 70,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Chad Sorrells*

Chad has taught Math for the last 9 years in Middle School. He has a M.S. in Instructional Technology and Elementary Education.

Combinations are an arrangement of objects where order does not matter. In this lesson, the coach of the Wildcats basketball team uses combinations to help his team prepare for the upcoming season.

The Jackson Wildcats play basketball in a highly competitive city district. There are eight teams in the district, and they all play each other once during the season. The coach of the Wildcats wants to know how many games will be played in the district this season. To calculate this amount, he will need to use a combination.

A **combination** is an arrangement of objects where order does not matter. The coach knows that there are eight teams, but the order the teams play each other does not matter. One way the coach could calculate the number of games is to list out each team and the teams they would play. The coach realized, though, that there were some games that would be repeated when writing them out. So, he researched and found a formula to calculate the number of combinations. The formula for a combination is *nCr = n!/r!(n-r)!*, where *n* represents the number of items and *r* represents the number of items being chosen at a time.

To calculate a combination, you must know how to calculate a factorial. A **factorial** is the product of all the positive integers equal to and less than your number. A factorial is written as the number followed by an exclamation point. For example, to write the factorial of 6, you would write *6!*. To calculate the factorial of 6, you would multiply all of the positive integers equal to and less than 6.

6! = 6 x 5 x 4 x 3 x 2 x 1

By multiplying these numbers together, we find that 6! = 720. Let's look at another example of how we would write and solve the factorial of 11. The factorial of 11 would be written as *11!*. To calculate:

11! = 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 39,916,800

The coach of the Wildcats now knows that he has to use the equation *nCr = n!/r!(n-r)!*, where *n* represents the number of items and *r* represents the number of items being chosen at a time. Using this equation, he must select two teams for each game from the eight teams in the district. So, the variable *n* would equal 8 and the variable *r* would equal 2. The equation would then look like 8 C 2 = 8!/2!(8-2)!.

To solve this equation, we would first need to perform (8-2) in the parenthesis, which would equal (8!/(2! x 6!). Next, we would expand 8!, 2! and 6!. 8! would equal 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1, over 2!, which is 2 x 1 x 6 x 5 x 4 x 3 x 2 x 1. By multiplying 8! on the top, it equals 40,320, and 2! x 6! on the bottom equals 1,440. Finally, we would divide 40,320 by 1,440, which would equal 28. The Wildcats coach now knows that there are 28 games that will be played in their district this season.

With such a tough season ahead of them, the Wildcats coach knows that his team must have a lot of practice. He decided that the team would play three-on-three games to work on their skills. There are 12 players on the team, and three of them will be chosen for each team. The coach now needs to know how many combinations of teams he could create. To use the equations, the variable *n* would equal 12 and the *r* variable would equal 3.

The coach needs to use the equation *nCr = n!/r!(n-r)!*. The coach then will need to substitute 12 in for *n* and 3 in for *r*. Next, he will need to subtract 12-3 = 9. So, he now has 12!/(3! x 9!).

Now, let's expand the factorials. 12! = 12 x 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 and 9! x 3! = 3 x 2 x 1 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1.

The easiest way to calculate the combination is to cancel out common terms. Since 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 appears on both the top and bottom of the equation, those terms can be cancelled out. The coach now has 12 x 11 x 10 on top and 3 x 2 x 1 left on bottom. The coach now multiplies on top, which equals 1,320, and the bottom, which equals 6. Next, the coach divided 1,320 / 6 = 220. The coach could choose 220 different combinations of three-player teams.

Just to review, a **combination** is an arrangement of objects where order does not matter. To calculate a combination, you must use a factorial. A **factorial** is the product of all the positive integers equal to and less than your number. The equation to calculate the combination is *nCr = n!/r!(n-r)!*, where *n* represents the number of items and *r* represents the number of items being chosen at a time.

When solving the equation, remember that the easiest way to solve is by canceling out common terms on both the top and the bottom of your equation.

Following this lesson, you'll be able to:

- Define combination and factorial
- Write the equation to calculate a combination
- Use the combination equation to solve problems
- Identify a trick to make solving combination problems easier

To unlock this lesson you must be a Study.com Member.

Create your account

Already a member? Log In

BackDid you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
10 in chapter 13 of the course:

Back To Course

Math 102: College Mathematics15 chapters | 121 lessons | 13 flashcard sets

- Go to Logic

- Go to Sets

- Understanding Bar Graphs and Pie Charts 9:36
- How to Calculate Percent Increase with Relative & Cumulative Frequency Tables 5:47
- How to Calculate Mean, Median, Mode & Range 8:30
- Calculating the Standard Deviation 13:05
- Probability of Simple, Compound and Complementary Events 6:55
- Probability of Independent and Dependent Events 12:06
- Either/Or Probability: Overlapping and Non-Overlapping Events 7:05
- Probability of Independent Events: The 'At Least One' Rule 5:27
- How to Calculate Simple Conditional Probabilities 5:10
- Math Combinations: Formula and Example Problems 7:14
- How to Calculate a Permutation 6:58
- How to Calculate the Probability of Permutations 10:06
- Go to Probability and Statistics

- Go to Geometry

- NCLEX Information Guide
- TEAS Information Guide
- HESI Information Guide
- Business 329: Retail Operations
- Computer Science 320: Digital Forensics
- Messaging in Business Communication
- Retail Market Selection
- Retail Merchandise Management
- The Study of Retail
- Retail Sales Operations
- Praxis Test Day Preparation
- NES Test Accommodations
- How To Pass The Praxis Core Writing
- How Long is the Praxis Test?
- Praxis Tests in North Carolina
- NES Test Registration Information
- Praxis Tests in Utah

- Feminism & Gender Roles in Jane Eyre
- What is a Parenthetical Citation? - Definition & Examples
- Darry in The Outsiders: Character Analysis & Quotes
- After Twenty Years by O. Henry Character Analysis
- Patient Risk-Taking Behavior: Nursing Evaluation & Treatment
- The Creation of District Courts in Ohio
- The Political Impact of Digital Communication
- RNA Editing: Definition & Processes
- Quiz & Worksheet - Dijkstra's Algorithm
- Quiz & Worksheet - The Signal-Man Theme
- Quiz & Worksheet - Churchill's Iron Curtain Speech
- Quiz & Worksheet - Questions About Chapter 5 of Lord of the Flies
- Quiz & Worksheet - A Christmas Carol Stave 4
- International Law & Global Issues Flashcards
- Foreign Policy, Defense Policy & Government Flashcards

- Accuplacer Sentence Skills Test: Practice & Study Guide
- Business 308: Globalization & International Management
- Instructional Strategies for Teaching Reading Comprehension
- Business 320: Advanced International Business
- TECEP Operations Management: Study Guide & Test Prep
- Colonial Governments & Economies
- Overview of Government Systems
- Quiz & Worksheet - Characteristics of Graded Streams
- Quiz & Worksheet - Written & Body Language for Veterinary Client Interactions
- Quiz & Worksheet - Veterinary Surgical Suites
- Quiz & Worksheet - Amy Tan's Mother Tongue
- Quiz & Worksheet - Legal vs. Ethical Standards Comparison

- Impact of Resources on the Movement of Products, Capital & People in East Asia
- How to Convert 10,000,000 Ergs to Joules
- How to Prepare for the GMAT
- What is the EPT Test?
- What Are Average ACT Test Scores?
- Memorial Day Activities
- What Are Average ACT Test Scores?
- How Long is the MCAT?
- What is the International Baccalaureate?
- States of Matter Experiments for Kids
- Romeo and Juliet Act 5 Lesson Plan
- PSAT Test Dates

Browse by subject