Login

Math Combinations: Formula and Example Problems

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: How to Calculate the Probability of Combinations

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
 Replay
Your next lesson will play in 10 seconds
  • 0:05 Math Combinations:…
  • 0:24 Combinations
  • 1:08 Factorial
  • 2:27 Combination Formula
  • 4:06 Example
  • 6:23 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Login or Sign up

Timeline
Autoplay
Autoplay
Create an account to start this course today
Try it free for 5 days!
Create An Account

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Chad Sorrells

Chad has taught Math for the last 9 years in Middle School. He has a M.S. in Instructional Technology and Elementary Education.

Combinations are an arrangement of objects where order does not matter. In this lesson, the coach of the Wildcats basketball team uses combinations to help his team prepare for the upcoming season.

Basketball Season and Combinations

The Jackson Wildcats play basketball in a highly competitive city district. There are eight teams in the district, and they all play each other once during the season. The coach of the Wildcats wants to know how many games will be played in the district this season. To calculate this amount, he will need to use a combination.

Combinations

A combination is an arrangement of objects where order does not matter. The coach knows that there are eight teams, but the order the teams play each other does not matter. One way the coach could calculate the number of games is to list out each team and the teams they would play. The coach realized, though, that there were some games that would be repeated when writing them out. So, he researched and found a formula to calculate the number of combinations. The formula for a combination is nCr = n!/r!(n-r)!, where n represents the number of items and r represents the number of items being chosen at a time.

Factorial

To calculate a combination, you must know how to calculate a factorial. A factorial is the product of all the positive integers equal to and less than your number. A factorial is written as the number followed by an exclamation point. For example, to write the factorial of 6, you would write 6!. To calculate the factorial of 6, you would multiply all of the positive integers equal to and less than 6.

6! = 6 x 5 x 4 x 3 x 2 x 1

By multiplying these numbers together, we find that 6! = 720. Let's look at another example of how we would write and solve the factorial of 11. The factorial of 11 would be written as 11!. To calculate:

11! = 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 39,916,800

Combination Formula

The coach of the Wildcats now knows that he has to use the equation nCr = n!/r!(n-r)!, where n represents the number of items and r represents the number of items being chosen at a time. Using this equation, he must select two teams for each game from the eight teams in the district. So, the variable n would equal 8 and the variable r would equal 2. The equation would then look like 8 C 2 = 8!/2!(8-2)!.

To solve this equation, we would first need to perform (8-2) in the parenthesis, which would equal (8!/(2! x 6!). Next, we would expand 8!, 2! and 6!. 8! would equal 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1, over 2!, which is 2 x 1 x 6 x 5 x 4 x 3 x 2 x 1. By multiplying 8! on the top, it equals 40,320, and 2! x 6! on the bottom equals 1,440. Finally, we would divide 40,320 by 1,440, which would equal 28. The Wildcats coach now knows that there are 28 games that will be played in their district this season.

Example

With such a tough season ahead of them, the Wildcats coach knows that his team must have a lot of practice. He decided that the team would play three-on-three games to work on their skills. There are 12 players on the team, and three of them will be chosen for each team. The coach now needs to know how many combinations of teams he could create. To use the equations, the variable n would equal 12 and the r variable would equal 3.

The coach needs to use the equation nCr = n!/r!(n-r)!. The coach then will need to substitute 12 in for n and 3 in for r. Next, he will need to subtract 12-3 = 9. So, he now has 12!/(3! x 9!).

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?
I am a teacher

Unlock Your Education

See for yourself why 30 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back

Earning College Credit

Did you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it free for 5 days!
Create An Account
Support