Back To Course

Math 101: College Algebra12 chapters | 95 lessons | 11 flashcard sets

Are you a student or a teacher?

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Zach Pino*

As math gets more and more complicated and there become more and more numbers flying around, it becomes really handy to put all these numbers in a nice organized grid... hello matrices! Learn about what they are and why there are used.

**Matrices** are the main ingredient of a branch of mathematics called **linear algebra**. Linear algebra first becomes nice when you begin solving systems of linear equations. By only putting the essential information into a big chart, it allows you to focus on the numbers and you can simplify a lot of the process.

For example, let's say you're solving a system of two equations with two variables. You can solve this with elimination by multiplying the top equation by 3 and the bottom equation by 2. This makes the coefficients on your *x*s opposite, and you can add them together to eliminate the *x*s and just get the *y*s by themselves and go from there by solving for *y* and solving the system.

So that's not too bad, but let's say that instead of having two equations and two variables, we had seven equations and seven variables. This gets way messier! I have *x*s, *y*s, *z*s, *w*s, *a*s, *b*s and *c*s, and if I wanted to try to solve this, it would be a huge headache writing out all those different letters every single time.

But if we instead take out all the letters and just put it into one big chart, we can kind of cut down on a lot of the work we have to do. We put this chart of numbers in what we call **brackets**. They're kind of like squared off parentheses. And it's organized into **rows** and **columns**. Each row represents one of the original equations from our problem, and each column represents all the different coefficients (numbers in front of the variables) that were on a particular variable. So all the numbers in the first column are all the different coefficients that were in front of the *x*s, for example.

We can still do the same type of thing. We can still use the elimination method and multiply the whole top equation by 2, which then turns my whole new matrix into this. And again, we can still add rows together in order to eliminate variables. Adding this top row to this second row eliminates my *x*s.

As you can see, this process can still take a pretty long time, so a matrix doesn't necessarily make it easy, but it makes it easier. It also allows us to tell a computer how to do this, and so matrices and linear algebra come up in computer programming a lot because it's really easy to tell the computer what this big grid of numbers is and then the computer can do the whole process for you in a few seconds.

So once we start becoming used to dealing with these grids of numbers, we can start to do more and more complex things with them. We can add them together as long as the number of rows and the number of columns are the same, we can add two matrices by simply adding the numbers that are in the same spots. I can add the 2 and the 4 together because they are in the top left, and I get my new top left number as 6. I can add the top right numbers (-3 and -2) together and get -5. I can add all the individual entries up and end up with my new matrix.

I can do subtraction in exactly the same way. Again, we just subtract* the numbers that are in the corresponding spots, and as long as the matrices have the same numbers of rows and columns, we end up with a new matrix that looks the exact same size. *(*misstatement in audio; transcript corrected)*

We can even multiply matrices. This is where it starts to get more complicated. The number of columns in the first matrix needs to be the same as the number of rows in the second matrix. It's a process of multiplying the first row in the first matrix with the first column in the second matrix, one entry at a time, and then adding the resulting products up into one entry. The top left entry of my end matrix would be 5.

I can do that again with the first row in the first matrix with the second column in the second matrix; 2*5 + 4*-3 + 1*-3 ends up with a -5 in the top right corner. I continue this process for each row in the first matrix with each column in the second matrix, and I end up with this resulting matrix, which isn't the same size, but it has the number of rows from the first with the number of columns from the second, and we get this.

So to review, **matrices** are grids of numbers divided into rows and columns and put into brackets. They are the center of a whole branch of mathematics called **linear algebra**. Most simply, they're used to solve systems of equations with a lot of variables, but they quickly become more complex and end up being useful in all sorts of fields.

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackDid you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
1 in chapter 2 of the course:

Back To Course

Math 101: College Algebra12 chapters | 95 lessons | 11 flashcard sets

- What is a Matrix? 5:39
- What is an Absolute Value? 4:42
- How to Evaluate Absolute Value Expressions 5:28
- How to Solve an Absolute Value Equation 5:26
- Solving Absolute Value Practice Problems 7:09
- How to Graph an Absolute Value and Do Transformations 8:14
- Graphing Absolute Value Equations: Dilations & Reflections 6:08
- Go to Matrices and Absolute Value

- Go to Functions

- GRE Information Guide
- Computer Science 310: Current Trends in Computer Science & IT
- Earth Science 105: Introduction to Oceanography
- Computer Science 331: Cybersecurity Risk Analysis Management
- Computer Science 336: Network Forensics
- Practical Applications for PowerPoint
- Practical Applications for Excel
- Practical Applications in Business Law
- Practical Applications for How to Network
- Practical Application for Technical Writing
- MEGA Test Accomodations
- Study.com Grant for Teachers
- What are the MEGA Tests?
- MOGEA Test Score Information
- ASWB Prep Product Comparison
- What is the MOGEA Test?
- TASC Exam Registration Information

- Dante's Inferno Fourth Circle of Hell: Punishments & Description
- Coaching Agreements: Development & Templates
- Extending & Connecting Learning Beyond the Classroom
- Promoting Motor Learning With Activities, Sports & Games
- Solving Divide-and-Conquer Recurrences
- Practical Application: Setting Performance Goals
- System Backups in Linux: Definition & Significance
- Practical Application: Principles of Composition in Graphic Design Infographic
- Quiz & Worksheet - Teaching Kids Conflict Resolution
- Quiz & Worksheet - Gifted Education Dos & Don'ts
- Quiz & Worksheet - Witches in the Jacobean Era
- Quiz & Worksheet - When to Intercede in Conflict as a Manager
- Quiz & Worksheet - Citizen Journalism Overview
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies

- High School US History Textbook
- TASC Writing: Prep and Practice
- Illinois Real Estate Broker License Exam: Study Guide
- GACE Health Education (613): Practice & Study Guide
- High School Chemistry Textbook
- Graph Symmetry in Trigonometry: Tutoring Solution
- Exponential & Logarithmic Functions in Trigonometry: Tutoring Solution
- Quiz & Worksheet - Components and Types of Fitness
- Quiz & Worksheet - Enema
- Quiz & Worksheet - Areolar Connective Tissue Function
- Quiz & Worksheet - Salmonella Typhi Bacteria
- Quiz & Worksheet - Eye Parts & Their Functions

- What is a Host in Biology? - Definition & Overview
- Gothic Novels Lesson Plan
- Alaska State Standards for Science
- TExES Core Subjects EC-6: Test Dates & Registration
- Electricity Experiments for Kids
- Wisconsin Science Standards for First Grade
- What is the International Baccalaureate?
- Response to Intervention (RTI) in Texas
- How to Write a Personal Statement for Law School
- Book Club Suggestions
- What Are the NGSS Performance Expectations?
- 504 Plans in Florida

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject