# What is a Photon? - Definition, Energy & Wavelength

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Matter: Physical and Chemical Properties

### You're on a roll. Keep up the good work!

Replay
Your next lesson will play in 10 seconds
• 0:01 Definition of a Photon
• 1:22 Energy
• 3:05 Wavlength
• 3:42 Calculation of Photon Energy
• 4:29 Lesson Summary

Want to watch this again later?

Timeline
Autoplay
Autoplay

#### Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Thomas Zesiger

Thomas has taught electronics and communications engineering, math, and physics and has a master's degree in electrical engineering.

In this lesson, we will learn the definition of a photon. We will also explain Planck's constant and its relationship to the photon energy and wavelength. The calculation of photon energy is also demonstrated.

## Definition of a Photon

A photon is the quantum of electromagnetic radiation. The term quantum is the smallest elemental unit of a quantity, or the smallest discrete amount of something. Thus, one quantum of electromagnetic energy is called a photon. The plural of quantum is quanta.

The concept of photons and quanta comes from quantum mechanics and quantum theory. Quantum mechanics is a mathematical model that describes the behavior of particles on an atomic and subatomic scale. It demonstrates that matter and energy are quantized, or come in small discrete bundles, on the smallest scales imaginable. A photon propagates at the speed of light.

A photon describes the particle properties of an electromagnetic wave instead of the overall wave itself. In other words, we can picture an electromagnetic wave as being made up of individual particles called photons. Both representations are correct and reciprocal views of electromagnetic waves. For example, light exhibits wave properties under conditions of refraction or interference. Particle properties are exhibited under conditions of emission or absorption of light.

## Energy

The idea of quantum mechanics and photons originated from scientists' observations of the photoelectric effect. The photoelectric effect is where light striking a metal surface causes electrons to be ejected from the metal. Scientists were unable to explain this phenomenon, but eventually the explanation came from quantum theory.

What they found was that the energy in each quantum of light depends on the frequency of the light. In particular, the energy of a photon equals Planck's constant times the frequency of the radiation. Mathematically, this is given by the equation E = hf. Planck's constant is the fundamental constant of quantum theory that determines the scale of the small-scale world. Planck's constant = 6.63 * 10-34 joule-second (J-s). The total energy in an electromagnetic wave is the sum of the energies of each photon in the wave.

The energy of a photon is so small that we usually measure it in electronvolts (eV). One eV is the potential energy of each electron in a 1-volt battery. One eV is equal to 1.6 * 10-19 joules (J). Therefore, we need to convert Planck's constant to appropriate units, which are electronvolts/hertz (eV/Hz). In eV/Hz, Planck's constant is 4.136 * 10-15 eV/Hz.

To unlock this lesson you must be a Study.com Member.

### Register to view this lesson

Are you a student or a teacher?

#### See for yourself why 30 million people use Study.com

##### Become a Study.com member and start learning now.
Back
What teachers are saying about Study.com

### Earning College Credit

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.