Back To Course

Math 101: College Algebra12 chapters | 95 lessons | 11 flashcard sets

Are you a student or a teacher?

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Elizabeth Foster*

Elizabeth has been involved with tutoring since high school and has a B.A. in Classics.

Brand new technologies don't always catch on right away because they can be expensive and don't always work as well as they should. But once the price comes down, and they start to work better, it doesn't take very long before it seems like everyone has one. Learn about the numbers behind this, exponential functions!

If you think of functions with exponents, you're probably used to seeing something like this.

That's the graph of *y* = *x*2, and it is indeed a function with an exponent. But it's not an exponential function.

In an **exponential function**, the independent variable, or x-value, is the exponent, while the base is a constant. For example, *y* = 2*x* would be an exponential function. Here's what that looks like.

The formula for an exponential function is *y* = *ab**x*, where *a* and *b* are constants. You can see that this conforms to the basic pattern of a function, where you plug in some value of *x* and get out some value of *y*. But what are the two constants for? Why do you need two?

To illustrate this, let's look at an example of something you might express with an exponential function. In this example, we'll look at the popularity of cell phones.

Whenever a new piece of technology comes out, people don't all rush out to get it all at once. It starts with just a few people, and then gradually it catches on more and more, and then everyone's using it.

Hey, that looks like an exponential function!

Just for example, let's take cell phones. Back in the caveman days, also known as the 1980s, cell phones were pretty rare. Without going into the exact numbers, let's say that in 1980, five people in your town had a cell phone.

Over the course of that year, each of those people persuaded one friend to get a phone, so then you had ten people with phones after one year. Then, each of those people persuaded a friend to get a phone, so after two years, there were 20 people with phones.

If you kept doubling the number every year, you'd get a really huge number really fast - that's the whole point of an exponential function. Every year, the number increases by an increasing amount.

Now let's get back to our equation for an exponential function: *y* = *ab**x*.

*Y* is the number of people with phones, because that's our dependent variable. *X* is the number of years since 1980, because that's our independent variable.

We started with just five people with cell phones, so 5 is our **starting value**, the initial value of the function, represented by the constant *a*. In the first year, we multiplied that by 2.

In the second year, we took our number from the first year and multiplied *that* by 2. This gives us 5 x 2 x 2, which equals 5 times 2 squared. The result was 20 people. In the third year, each of those 20 people convinced a friend to get a phone, so we simply had to multiply by 2 again. This gave us 5 x 2 x 2 x 2, or 5 times 2 to the third power, which equals 40. You can see the pattern here: we're adding 1 to the exponent every year, which means that we multiply 2 by itself one additional time every year. In this example, 2 represents **the number repeatedly multiplied each step**, the value raised to the power of *x*, represented by the constant *b*.

This is why we need two constants in the equation: one for the original value, and one for the value raised to the power of *x*. This can be a little bit confusing, because a lot of exponential functions start with just one thing to begin with, so *a* = 1. 1 times any number is that same number, so it looks like the function is just *y* = *b**x*. But don't be confused: *a* is still there! It's just equal to 1.

A common way that you'll see exponential functions described in words is with a phrase like 'increases or decreases by _____% per year.' For example, an investment increases in value by one percent per year. If you're calculating interest on a loan, you'd use this kind of equation.

Let's take a look at an example problem to see how it works.

An investor buys a property in an up-and-coming area of town. As the area gets nicer, the value of the property increases. The value of the property increases by two percent per year. If the investor originally bought it for $500,000, then how much is it worth after five years?

Let's plug this into our exponential function formula, *y* = *ab**x*.

*X* is the number of years after the initial purchase. *Y* is the value of the property. These are our input and output variables.

*A* represents the initial value of the function. The initial value of this property is 500,000, so we'll plug that in for *a*. Now, the tricky part is figuring out *b*.

In the first problem, *b* was 2, because we had twice as many cell phone users every year. In this case, the property is only worth two percent, or 0.02 more dollars, so its value is increasing more slowly. You might be tempted to plug in 0.02 for *b*, but just take a look and see what happens when you graph that.

You can see right away that this is not an increase in value! This gives us a function showing how much the property would be worth if every year it were valued at two percent of its value the year before. But we don't want two percent of its value the year before; we want two percent *more than* its value the year before. To get that, we'd have to multiply by 1.02.

*y* = 500,000 * 1.02*x*

If we determine some of the values of this function, we get:

Here's what that looks like on a graph.

Ah, that's better! You can't quite see the slope getting steeper because the numbers are so big, but notice how *y* is increasing by a little bit more every time - first it increases by 10,000, then by 10,200, then by 10,404, and so on.

You can see that if you do the math by hand, it works out to the same values you get from the function; multiplying each year's value by 1.02 to find the two percent increase gives you the same values for each year. So, for year five, which is what the question originally asked, the value would be $552,020.40. Our savvy investor made $52,000!

In this lesson, you learned about exponential functions. An exponential function is written in the form *y* = *ab**x*.

*y*represents the output*a*represents the initial value of the function*b*represents the rate of growth*x*represents the input

In an exponential function, *a* is multiplied by *b* *x* times to create *y*. The graph of an exponential function looks like a curve that starts off with a very flat slope but starts getting steeper and steeper over time.

You can use these functions to solve problems about everything from the growth of bacteria to the interest you earn on your bank account - try some on the quiz questions and see how you do!

This lesson on exponential functions could prepare you to achieve these objectives:

- Illustrate an exponential function
- Identify the graph of an exponential function
- Dissect an exponential function using a real-life example

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackDid you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
1 in chapter 9 of the course:

Back To Course

Math 101: College Algebra12 chapters | 95 lessons | 11 flashcard sets

- Computer Science 336: Network Forensics
- Computer Science 220: Fundamentals of Routing and Switching
- Global Competency Fundamentals & Applications
- Introduction to the Principles of Project Management
- Praxis Elementary Education: Reading & Language Arts - Applied CKT (7902): Study Guide & Practice
- Practical Applications for Business Ethics
- Practical Applications for Marketing
- Practical Applications for HR Management
- Practical Applications for Organizational Behavior
- Analyzing Texts Using Writing Structures
- MBLEx Prep Product Comparison
- AEPA Prep Product Comparison
- ASCP Prep Product Comparison
- NCE Prep Product Comparison
- TASC Test Score Information
- What is the TASC Test?
- Praxis Prep Product Comparison

- Diclofenac vs. Ibuprofen
- Developing & Managing a High-Quality Library Collection
- Library Space Planning
- Literacy Strategies for Teachers
- Arithmetic Operations in R Programming
- Practical Application: Understanding Employee Behavior
- Positive Global Outcomes of Global Competence
- Practical Application: Color Wheel Infographic
- Quiz & Worksheet - Developing a Learner-Centered Classroom
- Quiz & Worksheet - Technology for Teaching Reading
- Quiz & Worksheet - Pectoralis Major Anatomy
- Quiz & Worksheet - Oral & Written Communication Skills
- Quiz & Worksheet - How to Teach Reading to ELL Students
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies

- U.S. History II: Certificate Program
- NY Regents Exam - Geometry: Tutoring Solution
- FTCE Guidance & Counseling PK-12 (018): Test Practice & Study Guide
- TExES PPR EC-12 (160): Practice & Study Guide
- History 109: Western Europe Since 1945
- Exponential Functions & Logarithmic Functions: Homework Help
- ACT English: Section Overview
- Quiz & Worksheet - Berkeley on Empiricism & Idealism
- Quiz & Worksheet - Hume on Skepticism
- Quiz & Worksheet - Set Builder Notation
- Quiz & Worksheet - Life Span & the Individual Aging Processes
- Quiz & Worksheet - Naturalistic Fallacy

- Stereotyping Age Differences in the Workplace: Bias & Discrimination
- What were the Nuremberg Laws of 1935? - Definition, Race & Facts
- Fun Math Games for Kids
- Ohio Alternative Teacher Certification
- Accessibility and Disability Accommodations at Study.com
- Good Persuasive Writing Topics for Middle School
- How to Set Up a Class and Invite Students in Your Study.com Virtual Classroom
- Finding Travel Grants for Teachers
- How to Learn Spanish Fast
- FTCE Elementary Education K-6: Passing Score
- Florida Teacher Certification Renewal
- Speculative Writing Prompts

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject