What is Circumference? - Definition & Equation

What is Circumference? - Definition & Equation
Coming up next: Y Variable: Definition & Overview

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
 Replay
Your next lesson will play in 10 seconds
  • 0:00 Circumference
  • 0:32 Circumference Equation
  • 0:47 Diameter Equation
  • 1:20 Radius Equation
  • 2:05 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Timeline
Autoplay
Autoplay
Speed

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Yuanxin (Amy) Yang Alcocer

Amy has a master's degree in secondary education and has taught math at a public charter high school.

In this lesson, you'll learn how to define and find the circumference of a circle using two equations: one that involves the diameter and another that involves the radius.

Circumference

Our earth is a sphere, and if we sliced it in half, we'd end up with a circle. Circumference is the distance around a circle. We can measure the circumference of the earth by measuring the distance we'd cover if we walked all the way around the world. To understand circumference, we also need to understand the meaning of diameter and radius.

The diameter is the distance across the center of a circle, shown in green in this image. The radius is the distance from the center to the edge of a circle, shown in red.


The circumference is the distance all the way around the circle.
circumference


Circumference Equation

There are two ways to write the equation for the circumference.


Equation for circumference using the diameter.
circumference


Equation for circumference using the radius.
circumference


You can use either of these equations, depending on whether the problem provides you with the diameter or the radius.

Diameter Equation

There are two ways you can apply the equation for the circumference of a circle using the diameter.

The first is by using the equation to find the circumference given the diameter. For example, if a problem gives you a diameter of 7, you'd plug in the value of the diameter for d and replace pi with 3.14.

Diameter equation 1

The second way to use the equation is when you need to find the diameter given a circumference, such as 21.98 inches. To do this, divide both sides by pi.

Diameter equation 2

Radius Equation

There are also two ways you can apply the equation for the circumference of a circle using the radius.

The first is by using the equation to find the circumference given the radius of a circle. For example, let's say the problem gives you a radius of 6 inches. You'd plug the 6 into the r variable and replace pi with 3.14.


Finding the circumference given the radius.
circumference


To unlock this lesson you must be a Study.com Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back
What teachers are saying about Study.com
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create An Account
Support