What is Genetic Engineering? - Definition and Examples

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: What is a DNA Plasmid? - Importance to Genetic Engineering

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:08 History of Diabetes…
  • 1:45 Genetic Engineering
  • 3:35 Host Organism
  • 4:48 Vector
  • 6:30 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Login or Sign up


Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Greg Chin
How do we make the insulin used by diabetic patients? In this lesson, you'll learn the basics of how genetic engineering can be used to transform a bacterial host cell into a genetically-modified organism that produces human insulin.

A Brief History of Diabetes and Insulin

Diabetes is a disease in which the patient has trouble regulating his or her blood glucose level. Until the early 1900s, this was a deadly disease. Imbalanced glucose levels would induce coma and eventually death. Arguably, one of the greatest medical discoveries of the twentieth century was the development of genetic engineering technology. Let's imagine ourselves in the shoes of scientists struggling to develop a cure for diabetic-induced death.

For some diabetic patients, uncontrolled glucose levels is simply the result of a lack of a hormone called insulin. Insulin facilitates glucose transport into cells, thus lowering blood glucose levels. If that's true, we should be able to treat this form of diabetes by providing the diabetic patient with insulin. Okay. Easier said than done. Where are we going to get all this insulin?

Scientists eventually determined that insulin purified from animals like cattle or pigs was sufficient to treat the insulin deficiency in these diabetic patients. While this was a major medical breakthrough, the animal substitute wasn't without its side effects. Some patients suffered an allergic reaction. As we will see, genetic engineering would eventually solve this problem and pave the way for an entire new field of scientific and medical possibilities.

Genetic Engineering

Genetic engineering is the process by which scientists modify the genome of an organism. Creation of genetically modified organisms requires recombinant DNA. Recombinant DNA is a combination of DNA from different organisms or different locations in a given genome that would not normally be found in nature.

In most cases, use of recombinant DNA means that you have added an extra gene to an organism to alter a trait or add a new trait. Some uses of genetic engineering include improving the nutritional quality of food, creating pest-resistant crops, and creating infection-resistant livestock.


We're struggling with the fact that some diabetic patients are experiencing an allergic reaction in response to insulin isolated from cows and pigs. The obvious solution is to give patients human insulin instead of animal insulin. Injecting patients with purified human protein should minimize the allergic reaction patients are experiencing, but purifying insulin from human tissue is impractical. That's why cattle or pig insulin is being used at this time.

Let's see how genetic engineering opened the door to mass producing insulin rather than purifying it from animal tissue, human or otherwise.

Host Organism

The organism that is modified in a genetic engineering experiment is referred to as the host. Depending on the goal of the genetic engineering experiment, the host could range from a bacterial cell to a plant or animal cell or even a human cell. You might guess that scientists chose a human or animal cell to produce insulin. If so, you may be surprised to discover that scientists instead used bacterial cells to produce human insulin.

Bacterial, plant, and animal cells can be modified through genetic engineering.
host organism

There are many reasons why bacteria play an important role in many genetic engineering experiments. Consider the space required to house larger animals. Bacteria are small and relatively inexpensive to maintain compared to most alternatives. Consider the time required to raise larger animals. Bacteria reproduce much more rapidly. Finally, consider the end-goal. It is easier to overexpress and isolate molecules from a bacterial cell than it is from specific cells in a multicellular host.

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create An Account