What is Sound? - Definition and Factors Affecting the Speed of Sound

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Pitch and Volume in Sound Waves

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:05 The Nature of Sound Waves
  • 0:54 The Medium
  • 3:28 The Speed of Sound
  • 6:06 Speed and the Wave Equation
  • 8:37 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Login or Sign up


Recommended Lessons and Courses for You

Lesson Transcript
Instructor: April Koch

April teaches high school science and holds a master's degree in education.

Explore the minute workings of sound waves and how they travel. We'll discuss the main factors that affect the speed of sound waves, and we'll try some mathematical problems involving the wave equation.

The Nature of Sound Waves

Are you one of those people who likes to shout, 'Echo!' whenever you're inside a cavernous building? I think it's fun to experiment with echoes. Lots of people like to shout when they're standing under a bridge, inside a parking garage, or at the bottom of a canyon.

We know that echoes are simply the reflection of sound from the rigid walls of buildings and natural formations. But what can echoes tell us about sound waves? Can we learn how sound travels from one place to another by studying the echo phenomenon?

Before we get into that, let's review what a sound wave is. We've learned already that sound waves are longitudinal waves. That is, the particles in the medium vibrate in a direction parallel to the movement of the wave. Longitudinal waves are tougher to visualize than transverse waves. So let's use the sound of a guitar string as an example.

The Medium

When you pluck a guitar string, it begins to vibrate from side to side. This is what it would look like in slow motion. Let's pretend these are the air particles that are evenly distributed around the guitar and everywhere else. When the string moves to the right, like this, it pushes on the air particles and makes them press together. This is called a compression.

Air particles being pressed together is called compression.
Air Particles Being Compressed

When the string moves to the left, like this, it creates a gap in the air particles and they get farther apart. This is called a rarefaction. You probably remember that compressions and rarefactions are the equivalent of crests and troughs for a longitudinal wave. These areas of higher and lower air pressure travel outward, away from the string. In other words, the sound wave travels outward from the guitar. However, the air particles themselves do not travel. They simply oscillate back and forth, in a direction parallel to the motion of the sound wave.

In this example, the air surrounding the guitar is called the medium, because it's the material that carries the sound. When talking about waves, a medium is the substance that transports a wave from one place to another. The medium for sound waves is often air. But sound can also travel through liquids and solids.

Air is one medium that sound waves can travel through.
Air Medium Sound Waves

If you're talking about sound waves traveling between two whales singing in the ocean, then the medium is seawater. If you're talking about your neighbor's music traveling through the walls of his house, then the medium is the wood and drywall. No matter what the medium is, sound waves are able to travel through it because of the particles interacting with each other. The compressions and rarefactions occur within the particles of seawater, wood, or drywall, just as they did in the air outside our guitar string.

Once the first particles are pushed by the vibrations of the sound source, then they pass this push on to the next particles, which pass it on to the next, and so on. Thus the wave travels through the medium as a result of the particles bumping back and forth on each other. The interactions between particles in the medium cause the sound wave to travel through the medium.

So, if sound waves travel because of the particles in the medium, then what happens to sound if there is no medium? Well, you guessed it. Without a medium, there's no sound. Sound waves require a medium in which to travel from one place to another.

Think about a place where there's absolutely no air, like the surface of the moon. If you were standing on the moon, and your friend was standing ten feet away from you, you could shout and scream and clap your hands, and your friend wouldn't hear a thing. The moon has no atmosphere; it's in the great vacuum of outer space. So it doesn't matter how much noise you make - your sound will not carry anywhere, because there's no medium to carry it.

The Speed of Sound

Let's go back to the different mediums that sound can travel through. We said that sound waves travel through solids, liquids, and gases. They can travel through all states of matter. But do the waves travel the same way through each of these different substances?

How closely the particles are to each other affects the strength of their interaction.
Particles in Different Matter

We know that a solid has its particles packed very tightly together. Liquid particles are more loosely packed, and particles in a gas are pretty far apart. The distance between the particles affects how strong the interactions are between them. This, in turn, affects how quickly they transfer the energy of the wave. The stronger the particle interactions are, the more quickly the wave is transferred. So in general, sound travels faster in solids than in liquids, and faster in liquids than in gas.

Temperature actually increases the speed of sound, because warmer particles generally move at a faster rate. Scientists have derived a special formula for finding the speed of sound in dry air. It works for most of the temperatures found on Earth. The formula is v = 331 + (0.61)T, where v is the speed of sound, and T is the temperature.

For this formula, speed must be measured in meters per second, and temperature in degrees Celsius. You can see by this formula that an increase in temperature, or T, would cause an increase in speed, or v. If the temperature was 20° C, then the speed of sound in dry air would be about 343 meters per second. If the temperature rose to 30° C, then the speed would increase to 349 meters per second.

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create An Account