Xylem: The Effect of Transpiration and Cohesion on Function

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Phloem: The Pressure Flow Hypothesis of Food Movement

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:05 Review of Xylem
  • 2:01 Review of Cohesion
  • 3:32 Transpiration and Cohesion
  • 5:18 Lesson Summary
Save Save Save

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Speed Speed

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Danielle Weber

Danielle teaches high school science and has an master's degree in science education.

Roots absorb water and leaves release water, but how does water move up a plant? In this lesson, we will look at how this happens in vascular plants, including the importance of xylem, cohesion and transpiration in the process.

Review of Xylem

You may remember that vascular tissue is the tissue used to transport water and nutrients throughout a plant. There are two types of vascular tissue: xylem and phloem. Xylem transports water and dissolved minerals, while phloem transports food. We will focus on the structure of xylem and how this vascular tissue actually transports water throughout a plant.

Let's first review a few basic aspects of xylem. You may remember that xylem is found in vascular plants but not in non-vascular plants. Since xylem is a type of vascular tissue, this presence or absence of xylem makes sense. Within vascular plants, the arrangement of xylem is different depending on the specific type of flowering plant. In monocots, such as grasses, xylem is found in paired bundles with phloem throughout the stem. In dicots, such as trees, the xylem is found in concentric rings. The xylem is on the inside of the ring and the phloem is on the outside of the ring. We can see the layout of xylem in a monocot and in a dicot below. Remember that in the monocot, the xylem is found throughout the stem while in the dicot, the xylem is found in rings - like those you see in a tree trunk.

Layout of xylem
xylem in mono and dicot

Xylem is made from vessels, which are continuous tubes from dead, hollow, cylindrical cells lined up end to end throughout the plant. There may also be tracheids, which are dead cells that are tapered at the ends and overlap. Let's look at the vessels and tracheids a little bit more to get a better idea. Think of vessels as round pipes. These are lined up end to end in order to create a longer tube to transport water. Tracheids are different because they are tapered at the ends. While tracheids are useful, they are not as efficient at transporting water as vessels are because there may be gaps between the cells. We can see this in our diagram below. Additionally, vessels may be strengthened by lignin, which is produced by cells before they die to strengthen the cell wall. Lignin makes the vessels more durable.

In tracheids, there may be gaps between the cells.
tracheids tapered ends

Review of Cohesion

Cohesion is the forces holding water molecules together. This concept was covered when talking about properties of water and capillary action. You may remember capillary action is like when you have a little bit of water in the bottom of your cup but the water in the straw is a little bit higher than the water in the cup. Because water is polar - meaning it has a somewhat negative end and a somewhat positive end - it is attracted to other water molecules and other substances, such as the straw.

Like water moving up a straw, water moves from the roots and out of the leaves due to cohesion.

Now, you may be asking yourself: what does a straw have to do with xylem? Well, just like the water moving up the straw, water moves up xylem. The movement of water in plants is from the roots up through the shoot and out the leaves. Part of the reason for this movement of water is cohesion. The water molecules within the xylem tend to stick together, which allows them to help pull other water molecules up through the xylem - even against the flow of gravity.

When water is moving through the xylem, it is moving between different vessels or tracheids. It is very important that these elements are tightly held together because if there are air bubbles, the effects of cohesion are diminished. That is, if air bubbles get into the xylem, the water will no longer move up through these tubes. We can relate this idea back to our straw. If you have ever had a straw that has even a tiny hole in it, you know that it is very hard - even with the aid of suction - to get the water through the straw and up to you. This is what happens if air bubbles get into the tubes of the xylem.

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create an account