# Ch 16: Algebra: Differential Equations

### About This Chapter

## Algebra: Differential Equations - Chapter Summary

The objective of this chapter is to refresh your knowledge of differential equations through a series of short engaging lesson videos. Watch these videos to review separable, homogeneous, nonexact, first-order linear and higher-order linear equations. After viewing this series of lesson videos you should have a greater understanding of:

- Differences between ordinary differential equations and partial differential equations
- How to solve separable equations
- Homogeneous and exact equations
- Nonexact equations and integrating factors
- Methods for solving first-order linear equations
- Higher-order linear equations with constant coefficients

Each lesson video is taught by a professional instructor who is available to answer any questions you may develop during the course of this chapter. Better fortify your understanding of the material covered in these lesson videos by taking lesson quizzes. Use the results from the quizzes to determine what areas you have not mastered, then return to the points in the lesson videos where those topics were discussed using video tags on the timeline. If you think you would benefit from another way of reviewing the material, read over the written lesson transcripts.

### 1. Separable Differential Equation: Definition & Examples

Separable differential equations are used to rearrange variables so that all terms of one variable are on one side of the equation, thus ''separating'' the variables. See the steps involved in recognizing and solving these types of differential equations.

### 2. Nonexact Equations: Integrating Factors

The integrating factor method is useful in solving non-exact, linear, first-order, partial differential equations. Learn the technique of the integrating factors method and its application to the Fundamental Theorem of Calculus.

### 3. First-Order Linear Differential Equations

First-order linear differential equations can be solved using integrating factors to rearrange the equations based on the product of two functions. See the steps of this method in action through provided examples.

### Earning College Credit

Did you know… We have over 220 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

### Other Chapters

Other chapters within the GRE Math: Study Guide & Test Prep course

- Functions in Precalculus
- Analytical Geometry in Precalculus
- Polynomial Equations in Precalculus
- Logarithms & Trigonometry
- Limits of Sequences & Functions
- Calculating Derivatives
- Curve Sketching in Precalculus
- Differentiable Functions & Min-Max Problems
- Indefinite Integrals in Calculus
- Definite Integrals in Calculus
- Additional Topics in Calculus
- L'Hopital's Rule, Integrals & Series in Calculus
- Analytic Geometry in 3-Dimensions
- Partial Derivatives
- Calculus: Min/Max & Integrals
- Algebra: Matrices & Vectors
- Algebra: Determinants & Transformations
- Algebra: Number Theory & Abstract Algebra
- Additional Topics: Sets
- Additional Topics: Unions & Intersections
- Additional Topics: Graphing & Probability
- Additional Topics: Standard Deviation
- Additional Topics: Topology & Complex Variables
- Additional Topics: Trigonometry
- Additional Topics: Theorems, Analysis & Optimizing
- GRE Math Flashcards