# Ch 4: AP Physics 1: Graphing Kinematics

### About This Chapter

## AP Physics: Graphing Kinematics - Chapter Summary

The information in this chapter is delivered through fun lessons and self-assessment quizzes, which will enhance your review of graphing kinematics for the AP Physics 1 exam. You'll go over topics such position vs. time graphs, vector diagrams, free fall physics and projectile motion, just to name a few. After completion of this comprehensive review on graphing kinematics, you should have the knowledge to:

- Analyze motion using a ticker tape diagram
- Use a vector diagram
- Recognize a velocity vs. time graph
- Solve free fall physics problems
- Utilize the formula for acceleration of gravity
- Find acceleration using slope
- Solve projectile motion problems
- Use kinematics equations to calculate motion

You can review the lessons in any order and on the device of your choosing, giving you have flexibility and convenience as you study. If you would rather use a hard copy of the material, a transcript of each lesson is available to print. You can assess your understanding by taking the quizzes throughout the chapter, and then take the final chapter exam for a more comprehensive overview of your comprehension. Before you know it, you will be ready for questions about graphing kinematics on the AP Physics 1 exam.

### 1. Representing Kinematics with Graphs

In this lesson, we will introduce how to use graphs to visually represent kinematics. For some students, graphing these types of problems is easier than using algebra equations.

### 2. Ticker Tape Diagrams: Analyzing Motion and Acceleration

After watching this video, you will be able to explain what a ticker tape diagram is and analyze motion using a ticker tape diagram. A short quiz will follow.

### 3. What are Vector Diagrams? - Definition and Uses

After watching this video, you will be able to explain what vector diagrams are and how they are used, including vector addition and subtraction. A short quiz will follow.

### 4. Using Position vs. Time Graphs to Describe Motion

Describing motion with graphs can be a simple, yet powerful tool in your physics arsenal. In this lesson, we begin by looking at the basic position vs. time graph.

### 5. Determining Slope for Position vs. Time Graphs

Simply looking at a position vs. time graph can tell you a lot about straight line motion, but doing a few basic calculations can tell you even more. In this lesson, we will learn how to use the slope of the line to determine average velocity.

### 6. Using Velocity vs. Time Graphs to Describe Motion

In this lesson, we will look at an example of a velocity vs. time graph. By examining the shape of the graph, it is possible to accurately describe the motion of an object, even if that motion is very complex.

### 7. Determining Acceleration Using the Slope of a Velocity vs. Time Graph

In this lesson, we will learn how to use the slope of the line on a velocity vs. time graph to calculate the acceleration of an object in straight line motion.

### 8. Velocity vs. Time: Determining Displacement of an Object

There is a lot of information you can determine by looking at a velocity vs. time graph. In this lesson, we will use a little geometry to calculate the displacement of the object represented by the graph.

### 9. Understanding Graphs of Motion: Giving Qualitative Descriptions

You can just look at graphs of straight line motion and accurately describe how that object is moving. In this lesson, we will investigate the basic shapes the graphs can take and what conclusions you can draw from these shapes.

### 10. Free Fall Physics Practice Problems

In this lesson, we will dive into doing calculations involving free falling objects. We will begin with a few helpful tips to get started before working through a couple of example problems.

### 11. Graphing Free Fall Motion: Showing Acceleration

Kinematics topics are great for using x, y scatter graphs to visualize motion. In this lesson, we will examine the basic shapes of two different types of graphs of an object in free fall.

### 12. The Acceleration of Gravity: Definition & Formula

In this lesson, we will introduce the acceleration due to gravity. Objects in free fall are one of the few real world examples of straight line motion with constant acceleration, so they are commonly used when learning kinematics.

### 13. Projectile Motion: Definition and Examples

A projectile is any object that is given an initial velocity and then follows a path determined entirely by gravity. In this lesson, we will introduce projectile motion and touch on a few key facts to keep in mind when working through these problems.

### 14. Projectile Motion Practice Problems

After watching this video lesson, you will know how to use the sets of equations that are used to solve projectile motion problems. Learn how to manipulate them to find the answer you need.

### 15. Kinematic Equations List: Calculating Motion

After watching this video, you will be able to explain what kinematics is, list the five most important kinematics equations, and use them to solve problems. A short quiz will follow.

### Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

### Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

### Other Chapters

Other chapters within the AP Physics 1: Exam Prep course

- AP Physics 1: Systems
- AP Physics 1: Vectors
- AP Physics 1: Kinematics
- AP Physics 1: Newton's First Law of Motion
- AP Physics 1: Newton's Second Law of Motion
- AP Physics 1: Newton's Third Law of Motion
- AP Physics 1: Work, Energy, & Power
- AP Physics 1: Linear Momentum
- AP Physics 1: Motion
- AP Physics 1: Oscillations
- AP Physics 1: Rotational Motion
- AP Physics 1: Electrical Forces and Fields
- AP Physics 1: Direct Current Circuits
- AP Physics 1: Mechanical Waves
- AP Physics 1 Flashcards