Ch 21: Evolution for High School Biology Lesson Plans

About This Chapter

The Evolution for High School Biology chapter of this course is designed to help you plan and teach natural selection and speciation in your classroom. The video lessons, quizzes and transcripts can easily be adapted to provide your lesson plans with engaging and dynamic educational content. Make planning your course easier by using our syllabus as a guide.

Weekly Syllabus

Below is a sample breakdown of the Evolution for High School Biology chapter into a 5-day school week. Based on the pace of your course, you may need to adapt the lesson plan to fit your needs.

DayTopicsKey Terms and Concepts Covered
MondayTheory, Evidence and Rates of Evolution Anatomical, embryological, paleontological and other evidence for evolution; overview of the theory of evolution and rates of evolution, including the molecular clock hypothesis and punctuated equilibrium
TuesdayHardy Weinberg Equilibrium: Overview, Equation and Evolutionary Agents Application of the Hardy Weinberg equation to population genetics; allelic and genotypic frequencies; non-random mating and roles of evolutionary agents in changing genetic structures of populations
WednesdayNatural Selection and AdaptationDefinition and different types of natural selection; adaptation and environmental changes
ThursdaySpeciation: Barriers and TypesComparison of allopatric and sympatric speciation; examination of prezygotic and postzygotic barriers
FridayArtificial Selection, Random Mutations and Rapid Adaptation Role of artificial selection in selective crop production; relationship between genetic variables and random mutations

14 Lessons in Chapter 21: Evolution for High School Biology Lesson Plans
Test your knowledge with a 30-question chapter practice test
Theories of Evolution: Lamarck vs. Darwin

1. Theories of Evolution: Lamarck vs. Darwin

We'll look at the interplay between population genetics and environment. Are traits individually acquired or do entire populations evolve? The flying hamsters and a few other notable experiments will provide the answers.

Evidence for Evolution: Paleontology, Biogeography, Embryology, Comparative Anatomy & Molecular Biology

2. Evidence for Evolution: Paleontology, Biogeography, Embryology, Comparative Anatomy & Molecular Biology

There is much support for the theory of evolution. This evidence comes from a variety of scientific fields and provides information that helps us trace changes in species over time. In this lesson, we'll look at this evidence and explore how it supports the theory of evolution.

Rates of Evolution: Punctuated Equilibrium & Molecular Clock Hypothesis

3. Rates of Evolution: Punctuated Equilibrium & Molecular Clock Hypothesis

In general, evolution is a very long process. But rates of evolution can be different for different organisms. In this video lesson, you will identify how scientists study rates of evolution and fill in some of the missing 'steps' in the fossil record.

Hardy-Weinberg Equilibrium I: Overview

4. Hardy-Weinberg Equilibrium I: Overview

In this lesson, we'll examine population genetics in greater detail. We'll also explore notions of Hardy-Weinberg equilibrium for large, stable populations. Is the genetic makeup of our flying hamster population changing? The Hardy-Weinberg equilibrium can serve as a reference point as we try to answer population genetics questions.

Hardy-Weinberg Equilibrium II: The Equation

5. Hardy-Weinberg Equilibrium II: The Equation

The Hardy-Weinberg equilibrium equation is represented by a polynomial, so we'll have to do some calculations. Don't be intimidated; a few coin tosses can help us make sense of allelic frequencies in a given gene pool.

Hardy-Weinberg Equilibrium III: Evolutionary Agents

6. Hardy-Weinberg Equilibrium III: Evolutionary Agents

In this lesson, you'll learn how the Hardy-Weinberg equation relates to different evolutionary agents and population changes. Discover how the equation may be used to discover populations that are not in equilibrium.

Natural Selection & Adaptation: Definition, Theory & Examples

7. Natural Selection & Adaptation: Definition, Theory & Examples

How does natural selection help shape the amazing types of animals we witness around us? In this lesson, we'll explore adaptations and what they can tell us about a species' past evolution.

Natural Selection: Definition, Types & Examples

8. Natural Selection: Definition, Types & Examples

We'll take a look at the types of natural selection that can occur. From flying hamsters to moths, you'll start to grasp the different paths organisms can take as they respond to their changing environments over time.

Speciation: Allopatric and Sympatric Speciation

9. Speciation: Allopatric and Sympatric Speciation

Discover the definition of a species and learn more about how species split. Find out common terms related to the splitting of species and study what role polyploidy plays in the development of a species.

Prezygotic Reproductive Barriers & Speciation: Definition & Examples

10. Prezygotic Reproductive Barriers & Speciation: Definition & Examples

We may take for granted why animals choose to mate with other animals of similar appearance, but it's not that simple. There are actually biological barriers to reproduction that can prevent even seemingly closely related species from reproducing. This lesson looks at one such category of hindrances, prezygotic barriers, which make fertilization impossible.

Postzygotic Reproductive Barriers: Definition & Examples

11. Postzygotic Reproductive Barriers: Definition & Examples

Do flying hamsters represent a separate species from your run-of-the-mill hamsters? We'll get to the bottom of this by performing crosses between the two hamster types. You'll explore postzygotic reproductive barriers and their possibly tragic consequences.

Genetic Variability and Random Mutation

12. Genetic Variability and Random Mutation

Evolution is driven by variation among populations. The amount of variability determines how well a population can adapt to environmental changes, while random mutations can provide new variations that help a population adapt to unexpected changes.

An Example of Rapid Adaptation: The Peppered Moths

13. An Example of Rapid Adaptation: The Peppered Moths

Normally, adaptations occur over thousands or millions of years. However, drastic changes in the environment can shorten the time period in which a change comes about. In such cases, we can learn a lot about the evolutionary process and how natural selection drives it forward.

Artificial Selection in Evolution

14. Artificial Selection in Evolution

Humans have been selectively breeding for desirable traits in plants and animals for a long time. This artificial selection allows for a lot of control in the breeding process but can also lead to unintended mutations within a population of organisms.

Chapter Practice Exam
Test your knowledge of this chapter with a 30 question practice chapter exam.
Not Taken
Practice Final Exam
Test your knowledge of the entire course with a 50 question practice final exam.
Not Taken

Earning College Credit

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Other Chapters

Other chapters within the High School Biology Curriculum Resource & Lesson Plans course

Support