# Ch 8: Graphing Derivatives and L'Hopital's Rule: Homework Help

### About This Chapter

## How it works:

- Identify which concepts are covered on your graphing derivatives and L'Hopital's Rule homework.
- Find videos on those topics within this chapter.
- Watch fun videos, pausing and reviewing as needed.
- Complete sample problems and get instant feedback.
- Finish your graphing derivatives and L'Hopital's Rule homework with ease!

## Topics from your homework you'll be able to complete:

- Graphing the derivative from any function
- Understanding non-differentiable graphs of derivatives
- Determining maximum and minimum values of a graph
- Using differentiation to determine maximum and minimum values
- Determining concavity and inflection points using differentiation
- Understanding L'Hopital's Rule
- Applying L'Hopital's Rule to simple and complex cases

### 1. Graphing the Derivative from Any Function

When you know the rules, calculating the derivates of equations is relatively straightforward, although it can be tedious! What happens, though, when you don't know the function? In this lesson, learn how to graph the derivative of a function based solely on a graph of the function!

### 2. Non Differentiable Graphs of Derivatives

When I walk along a curve, I stand normal to it. That is, I stand perpendicular to the tangent. Learn how to calculate where I'm standing in this lesson.

### 3. How to Determine Maximum and Minimum Values of a Graph

What is the highest point on a roller coaster? Most roller coasters have a lot of peaks, but only one is really the highest. In this lesson, learn the difference between the little bumps and the mother of all peaks on your favorite ride.

### 4. Using Differentiation to Find Maximum and Minimum Values

If you are shot out of a cannon, how do you know when you've reached your maximum height? When walking through a valley, how do you know when you are at the bottom? In this lesson, use the properties of the derivative to find the maxima and minima of a function.

### 5. Concavity and Inflection Points on Graphs

You might not think of a cup when you think of an awesome skateboard ramp. But I'm sure a really bad ramp would give you a frown, right? Learn about cups and frowns in this lesson on concavity and inflection points.

### 6. Understanding Concavity and Inflection Points with Differentiation

Put a little more meaning behind those cups and frowns. In this lesson, use the second derivative of a function to determine if it is concave up or concave down.

### 7. Data Mining: Function Properties from Derivatives

Some shoes come with accelerometers that give a person's acceleration as a function of time. From this information, the shoe can determine roughly how fast you're going. In this lesson, learn how this works as we take the derivative of a function and glean information from it about the original function.

### 8. Data Mining: Identifying Functions From Derivative Graphs

If you saw the graph of speed as a function of time for a bicycle, a jet, and a VW bug, could you pick which vehicle produced which graph? In this lesson, try it as we match functions with their derivatives.

### 9. What is L'Hopital's Rule?

A Swiss mathematician and a French mathematician walk into a bar ... and they walk out with the famous L'Hopital's rule for finding limits. In this lesson, learn what these two mathematicians came up with and how to use it to avoid the limit of zero divided by zero!

### 10. Applying L'Hopital's Rule in Simple Cases

L'Hôpital's rule may have disputed origins, but in this lesson you will use it for finding the limits of a range of functions, from trigonometric to polynomials and for limits of infinity/infinity and 0/0.

### 11. Applying L'Hopital's Rule in Complex Cases

L'Hôpital's rule is great for finding limits, but what happens when you end up with exactly what you started with? Find out how to use L'Hôpital's rule in this and other advanced situations in this lesson.

### Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

### Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

### Other Chapters

Other chapters within the Calculus: Homework Help Resource course

- Graphing and Functions: Homework Help
- Continuity: Homework Help
- Geometry and Trigonometry in Calculus: Homework Help
- Using Scientific Calculators in Calculus: Homework Help
- Limits: Homework Help
- Rate of Change: Homework Help
- Calculating Derivatives and Derivative Rules: Homework Help
- Applications of Derivatives: Homework Help
- Area Under the Curve and Integrals: Homework Help
- Integration and Integration Techniques: Homework Help
- Integration Applications: Homework Help
- Differential Equations: Homework Help