Ch 11: Physical Science - Force, Motion, and Newton's Laws: Tutoring Solution

About This Chapter

The Force, Motion, and Newton's Laws chapter of this High School Physical Science Tutoring Solution is a flexible and affordable path to learning about force, motion, and Newton's three laws of motion. These simple and fun video lessons are each about five minutes long and they teach all of the essential concepts related to force, motion, and Newton's laws required in a typical high school physical science course.

How it works:

  • Begin your assignment or other high school physical science work.
  • Identify the force, motion, and Newton's laws concepts that you're stuck on.
  • Find fun videos on the topics you need to understand.
  • Press play, watch and learn!
  • Complete the quizzes to test your understanding.
  • As needed, submit a question to one of our instructors for personalized support.

Who's it for?

This chapter of our high school physical science tutoring solution will benefit any student who is trying to learn about force, motion, and Newton's laws and earn better grades. This resource can help students including those who:

  • Struggle with understanding mass and weight, free-body diagrams, friction or any other topic related to force, motion, or Newton's laws
  • Have limited time for studying
  • Want a cost effective way to supplement their science learning
  • Prefer learning science visually
  • Find themselves failing or close to failing their force, motion, and Newton's laws unit
  • Cope with ADD or ADHD
  • Want to get ahead in high school physical science
  • Don't have access to their science teacher outside of class

Why it works:

  • Engaging Tutors: We make learning about force, motion, and Newton's laws simple and fun.
  • Cost Efficient: For less than 20% of the cost of a private tutor, you'll have unlimited access 24/7.
  • Consistent High Quality: Unlike a live physical science tutor, these video lessons are thoroughly reviewed.
  • Convenient: Imagine a tutor as portable as your laptop, tablet or smartphone. Learn about force, motion, and Newton's laws on the go!
  • Learn at Your Pace: You can pause and rewatch lessons as often as you'd like, until you master the material.

Learning Objectives

  • Explain Newton's first, second and third laws of motion
  • Identify the contrasts between mass and inertia, and those between mass and weight
  • Describe an object's velocity and state of motion
  • List different kinds of forces, and differentiate between balanced and unbalanced forces
  • Draw free-body diagrams
  • Define net force and the normal force
  • Calculate an object's rate of acceleration
  • Identify the forces that act upon a given object
  • Describe free fall and air resistance
  • Learn about weight, gravity and mass
  • Explore action and reaction force pairs
  • Define friction and inclined planes
  • Describe buoyant forces and linear momentum

22 Lessons in Chapter 11: Physical Science - Force, Motion, and Newton's Laws: Tutoring Solution
Test your knowledge with a 30-question chapter practice test
Newton's First Law of Motion: Examples of the Effect of Force on Motion

1. Newton's First Law of Motion: Examples of the Effect of Force on Motion

This lesson describes Newton's first law of motion, also known as the law of inertia. The interaction between force and motion is explained. Several examples are used to discuss the implications of this law on earth and in space.

Distinguishing Between Inertia and Mass

2. Distinguishing Between Inertia and Mass

Mass and inertia are both related to the amount of matter an object has, but they aren't exactly the same thing. In this video lesson, you'll see how mass affects an object's inertia, which in turn affects that object's motion.

Mass and Weight: Differences and Calculations

3. Mass and Weight: Differences and Calculations

We often talk about mass and weight as if they are the same. While they are proportional to each other, they are not in fact the same. In this video lesson you will learn to distinguish between the two, as well as convert one to the other.

State of Motion and Velocity

4. State of Motion and Velocity

An object's state of motion describes how it is moving. But there are many ways we can describe motion, such as speed and velocity. This motion is relative to other objects around it, such as the earth, the sun, and even other stars in our galaxy.

Force: Definition and Types

5. Force: Definition and Types

Force is everywhere and it comes in a variety of sizes, directions, and types. In this video lesson, you'll identify force as well the different types of force that objects may experience.

Forces: Balanced and Unbalanced

6. Forces: Balanced and Unbalanced

Forces are needed to start or stop an object's motion, but can also be involved when an object is at rest or already traveling at constant velocity. In this video lesson, you'll identify the difference between balanced and unbalanced forces, understanding how they affect the movement of objects.

Free-Body Diagrams

7. Free-Body Diagrams

Forces that act on an object can be drawn through special vector diagrams called free-body diagrams. In this video lesson you'll identify how to correctly represent forces in a free-body diagram through vector arrows and force labels.

Net Force: Definition and Calculations

8. Net Force: Definition and Calculations

Because forces are vectors, we can't simply add them up to get a total amount of force on an object. Instead, we calculate the net force, which is important to understand because it tells us about an object's state of motion.

Newton's Second Law of Motion: The Relationship Between Force and Acceleration

9. Newton's Second Law of Motion: The Relationship Between Force and Acceleration

This lesson defines Newton's second law of motion. Examples are used to illustrate how unbalanced forces cause objects to accelerate. The examples are used to practice calculating acceleration and force for objects in motion.

Determining the Acceleration of an Object

10. Determining the Acceleration of an Object

Acceleration is a change in an object's state of motion. A few variables need to be identified to calculate an object's acceleration, but once we have those values, we can put them into a simple equation to find out how quickly or slowly an object's velocity is changing.

Determining the Individual Forces Acting Upon an Object

11. Determining the Individual Forces Acting Upon an Object

Objects constantly have forces acting on them whether they are moving or at rest. In this video lesson, you'll understand how to identify the individual forces acting on an object by reviewing the different types of forces and the use of free-body diagrams.

Air Resistance and Free Fall

12. Air Resistance and Free Fall

Through experiments by Galileo and Newton, we can understand why all objects in free-fall experience the same acceleration, ''g''. We can also see why air resistance affects a falling object's velocity and how this can lead to a falling object reaching a terminal velocity.

Newton's Third Law of Motion: Examples of the Relationship Between Two Forces

13. Newton's Third Law of Motion: Examples of the Relationship Between Two Forces

This lesson describes Newton's third law of motion. Examples are provided to illustrate how interacting objects experience forces. The lesson explains how objects accelerate as a result of force. Applications of Newton's third law are illustrated in nature, machines, and space.

Newton's Laws and Weight, Mass & Gravity

14. Newton's Laws and Weight, Mass & Gravity

Did you know that mass and weight are not the same? This lesson describes the difference between the two as well as the effect of gravity on weight. Examples are used to teach you how to calculate weight based on mass and acceleration of gravity.

Identifying Action and Reaction Force Pairs

15. Identifying Action and Reaction Force Pairs

Good things often come in pairs, and forces are no exception. In this lesson you'll explore Newton's second and third laws of motion to understand how action and reaction pairs affect objects interacting with each other.

The Normal Force: Definition and Examples

16. The Normal Force: Definition and Examples

The normal force is also called the contact force because it only exists when objects are touching. In this lesson, we will investigate what the normal force is and how to calculate it on flat and inclined surfaces.

Friction: Definition and Types

17. Friction: Definition and Types

You experience friction all the time, and you should be glad you do! Friction helps keep stationary objects in place as well as slow moving objects down as they slide across a surface. This lesson identifies what friction is and explains the two ways we find this force on earth.

Inclined Planes in Physics: Definition, Facts, and Examples

18. Inclined Planes in Physics: Definition, Facts, and Examples

If an object is not horizontal to the ground, it may be on an inclined plane. We need to adjust both the calculations and the free-body diagram when determining the net force on an object on an inclined plane. Learn how in this lesson.

Linear Momentum: Definition, Equation, and Examples

19. Linear Momentum: Definition, Equation, and Examples

Any moving object has momentum, but how much momentum it has depends on its mass and velocity. In this lesson, you'll identify linear momentum, as well as see examples of how an object's momentum is affected by mass and velocity.

Buoyancy: Calculating Force and Density with Archimedes' Principle

20. Buoyancy: Calculating Force and Density with Archimedes' Principle

Knowledge of the buoyant force is important when trying to understand why some objects float while other objects sink. In this lesson you'll learn about this unique force and how we apply it to various situations using Archimedes' Principle.

Static Friction: Definition, Formula & Examples

21. Static Friction: Definition, Formula & Examples

In this lesson you will learn what static friction is and how it is different from kinetic friction. You will also learn a formula that can be used to calculate the force of static friction and see some examples of static friction in real life.

Molecular Weight: Definition & Formula

22. Molecular Weight: Definition & Formula

In this lesson, we will learn about molecular weight, which is the mass of a molecule determined by summing the masses of all of the atoms that make it up. We will look at the formula for determining molecular weight, learn where to find atomic masses on the periodic table, and do an example calculation.

Chapter Practice Exam
Test your knowledge of this chapter with a 30 question practice chapter exam.
Not Taken
Practice Final Exam
Test your knowledge of the entire course with a 50 question practice final exam.
Not Taken

Earning College Credit

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Other Chapters

Other chapters within the High School Physical Science: Tutoring Solution course

Support