# Ch 17: Understanding & Applying Integration Techniques

### About This Chapter

## Understanding & Applying Integration Techniques - Chapter Summary

This helpful chapter covers the application of integration techniques, including anti-derivatives, calculating the integrals of exponential functions and trigonometric substitution. If you need to go back and review just a portion of a lesson, you can jump directly to the subject you want by using the video tabs feature. To make sure you've understood the lesson, take the multiple-choice quiz. An instructor is available to help you work through any of the more challenging topics if you need assistance. Once you complete these lessons, you should be able to:

- Calculate the integrals of simple shapes and polynomials
- Find the integrals of trigonometric functions and exponential functions
- Use substitution to solve integrals, including difficult integrals
- Know how to use integration by parts
- Factorize fractions with quadratic denominators
- Integrate functions with partial fractions
- Understand trigonometric substitution and use it solve integrals

### 1. Calculating Integrals of Simple Shapes

So you can write something called an integral with a weird squiggly line. Now what? In this lesson, calculate first integrals using your knowledge of nothing but geometry.

### 2. Anti-Derivatives: Calculating Indefinite Integrals of Polynomials

If you throw a ball in the air, the path that it takes is a polynomial. In this lesson, learn how to integrate these fantastic functions by putting together your knowledge of the fundamental theorem of calculus and your ability to differentiate polynomial functions.

### 3. How to Calculate Integrals of Trigonometric Functions

Ever feel like you are going around in circles? Like, periodically you have your ups and downs? Well, sines and cosines go up and down regularly too. In this lesson, learn how to integrate these circular functions.

### 4. How to Calculate Integrals of Exponential Functions

Exponential functions are so predictable. It doesn't matter how many times you differentiate e^x, it always stays the same. In this lesson, learn what this means for finding the integrals of such boring functions!

### 5. How to Solve Integrals Using Substitution

Some integrals are as easy as riding a bike. But more often, integrals can look like deformed bikes from Mars in the year 3000. In this lesson, you will learn how to transform these scary-looking integrals into simpler ones that really are as easy as riding a bike.

### 6. Substitution Techniques for Difficult Integrals

Up, down. East, West. Opposites are everywhere. In this lesson, learn how you can think of substitution for integration as the opposite of the chain rule of differentiation.

### 7. Using Integration By Parts

Your mother may have warned you not to bite off more than you can chew. The same thing is true with integration. In this lesson, learn how integration by parts can help you split a big interval into bite-sized pieces!

### 8. Partial Fractions: How to Factorize Fractions with Quadratic Denominators

Adding fractions with different denominators is something you probably learned how to do in algebra. In this lesson, learn how to do the opposite: take a complicated fraction and turn it into two simpler ones.

### 9. How to Integrate Functions With Partial Fractions

In this lesson, learn how to integrate complicated fractions by using the partial fractions technique. That is, you will turn a complicated fraction into something a bit easier to integrate by finding partial fractions!

### 10. Understanding Trigonometric Substitution

Sometimes a simple substitution can make life a lot easier. Imagine how nice it would be if you could replace your federal tax form with a 'Hello, my name is...' name badge! In this lesson, we review how you can use trigonometry to make substitutions to simplify integrals.

### 11. How to Use Trigonometric Substitution to Solve Integrals

In this lesson, we use each of the common integration techniques to solve different integrals. It's not always obvious which technique will be the easiest, so being familiar with an arsenal of methods might save you a lot of work!

### Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

### Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

### Other Chapters

Other chapters within the AP Calculus AB: Exam Prep course

- Graph Basics
- The Basics of Functions
- How to Graph Functions
- Limits of Functions
- Continuity of Functions
- Understanding Exponentials & Logarithms
- Using Exponents and Polynomials
- Properties of Derivatives
- The Derivative at a Point
- The Derivative as a Function
- Second Derivatives
- Using Derivatives
- Computing Derivatives
- Properties of Definite Integrals
- Applications of Integrals
- Using the Fundamental Theorem of Calculus
- Approximating Definite Integrals
- Using a Scientific Calculator for Calculus
- About the AP Calculus Exam
- AP Calculus AB Flashcards