Copyright

Ch 6: WEST Chemistry: Chemical Bonds

About This Chapter

The lessons in this chapter are about the different types of chemical bonds, the forces that hold them together and the techniques used to diagram them. Use these lessons to prepare for related questions on the WEST-E Chemistry exam.

WEST Chemistry: Chemical Bonds - Chapter Summary

This chapter is composed of a series of short, engaging lesson videos that will help you improve your understanding of chemical bonds, the energy that holds them together and the diagrams used to portray them. The lessons can be used to prepare you for the exam. Each lesson is taught by an expert instructor who is available to answer any questions you may have about chemical bonds so that you can effectively master material in this chapter about:

  • Lewis structures and the octet rule
  • Formulas, charges and ionic formations of ions
  • Formation and naming of covalent compounds
  • Predicting bond polarity and ionic character of covalent bonds
  • Molecule shape and the VSEPR theory
  • Characteristics of strong and weak intermolecular forces
  • Uses for the orbital hybridization, valence bond and molecular orbital theories
  • Characteristics of metallic bonding

Take advantage of the mobile-device compatibility of these lessons and watch them at your own convenience, even when you are not at a computer. The quizzes are designed to test your comprehension. Video tags allow you to jump back and forth to specific areas as needed.

WEST Chemistry: Chemical Bonds Objectives

When you take the Washington Educator Skills Tests - Endorsements (WEST-E) Chemistry exam, you will be asked to complete 110 multiple-choice questions that are meant to measure your understanding of the principles, procedures and tools of chemistry. To do well on this exam, you will need to accurately answer these questions in a 2.5-hour testing session. When studying for this exam, expect 26% of the material covered in it to belong to the content domain of Energy and Chemical Bonding.

15 Lessons in Chapter 6: WEST Chemistry: Chemical Bonds
Test your knowledge with a 30-question chapter practice test
The Octet Rule and Lewis Structures of Atoms

1. The Octet Rule and Lewis Structures of Atoms

Learn the octet rule and how it applies to electron energy levels. Identify valence electrons and learn how to determine them by looking at the periodic table. Also, discover how they pertain to the octet rule. Learn how to draw the Lewis diagram of an atom, and understand how it provides clues to chemical bonding.

Ions: Predicting Formation, Charge, and Formulas of Ions

2. Ions: Predicting Formation, Charge, and Formulas of Ions

Learn how ions are formed using the octet rule. Use the periodic table to predict the charge an atom will have when it becomes an ion. Learn whether an ion is a cation or anion and how to write the formula depending on what charge the ion has.

Ionic Compounds: Formation, Lattice Energy and Properties

3. Ionic Compounds: Formation, Lattice Energy and Properties

In this lesson, you'll learn about ionic compounds and how they form. Additionally, you'll learn the properties of ionic compounds, such as their high melting and boiling points, their ability to conduct electricity, and the fact that they form crystals.

Naming Ionic Compounds: Simple Binary, Transition Metal & Polyatomic Ion Compounds

4. Naming Ionic Compounds: Simple Binary, Transition Metal & Polyatomic Ion Compounds

An important part of dealing with chemical compounds is knowing how to refer to them. Learn how to name all ionic compounds, including simple binary compounds, compounds containing transition metals and compounds containing polyatomic ions.

Covalent Compounds: Properties, Naming & Formation

5. Covalent Compounds: Properties, Naming & Formation

Learn about covalent bonds, how covalent compounds are formed and the properties inherent to covalent compounds, such as low melting and boiling points, in this lesson. Also, learn what rules to follow to name simple covalent compounds.

Lewis Structures: Single, Double & Triple Bonds

6. Lewis Structures: Single, Double & Triple Bonds

Review what a Lewis dot diagram is and discover how to draw a Lewis dot structural formula for compounds. Learn how to represent single, double and triple bonds with lines instead of dots. Also, learn how compounds arrange themselves.

Lewis Dot Structures: Polyatomic Ions

7. Lewis Dot Structures: Polyatomic Ions

This lesson defines Lewis dot structures and explains how to draw them for molecules in step-by-step detail. We'll also explore polyatomic ions and how to draw Lewis dot structures for them.

Covalent Bonds: Predicting Bond Polarity and Ionic Character

8. Covalent Bonds: Predicting Bond Polarity and Ionic Character

Learn about covalent bonds and their two types: nonpolar covalent bonds and polar covalent bonds. Discover how to predict the type of bond that will form based on the periodic table. Learn what ionic character means and how to determine it.

VSEPR Theory & Molecule Shapes

9. VSEPR Theory & Molecule Shapes

In this lesson, you'll learn about the VSEPR theory and how it can be used to explain molecule shapes. Then, learn how to predict the shape of a molecule by applying the VSEPR theory to the Lewis dot structure.

Hydrogen Bonding, Dipole-Dipole & Ion-Dipole Forces: Strong Intermolecular Forces

10. Hydrogen Bonding, Dipole-Dipole & Ion-Dipole Forces: Strong Intermolecular Forces

Learn about intermolecular vs. intramolecular forces. Learn the different intermolecular bonds (including hydrogen bonding and dipole-dipole and ion-dipole forces), their strengths, and their effects on properties, such as boiling and melting points, solubility, and evaporation.

London Dispersion Forces (Van Der Waals Forces): Weak Intermolecular Forces

11. London Dispersion Forces (Van Der Waals Forces): Weak Intermolecular Forces

Learn how London dispersion forces are created and what effect they have on properties such as boiling and melting points. Discover this weak intermolecular force and how it is one of the Van der Waals forces.

Surface Tension, Capillary Action, Viscosity & Physical Changes

12. Surface Tension, Capillary Action, Viscosity & Physical Changes

There are many mysteries in the universe. This lesson will focus on a few that can be easily explained due to intermolecular forces, mainly surface tension, capillary action, viscosity, and physical changes.

Using Orbital Hybridization and Valence Bond Theory to Predict Molecular Shape

13. Using Orbital Hybridization and Valence Bond Theory to Predict Molecular Shape

You'll learn how to explain how shapes of molecules can be predicted using valence bond theory and hybridization. When finished, you'll understand the difference between sigma and pi bonds and how the VSEPR theory, along with the hybridization theory, helps predict the shape of a molecule.

Molecular Orbital Theory: Tutorial and Diagrams

14. Molecular Orbital Theory: Tutorial and Diagrams

Learn how to sketch the overlap of orbitals to form sigma and pi bonds. Use the molecular orbital theory to determine bond order. Discover how bond order affects bond strength and bond energy.

Metallic Bonding: The Electron-Sea Model & Why Metals Are Good Electrical Conductors

15. Metallic Bonding: The Electron-Sea Model & Why Metals Are Good Electrical Conductors

Learn why metallic bonding is called the electron sea model. Discover why metals bond the way they do and why they are shiny, malleable and conduct electricity well.

Chapter Practice Exam
Test your knowledge of this chapter with a 30 question practice chapter exam.
Not Taken
Practice Final Exam
Test your knowledge of the entire course with a 50 question practice final exam.
Not Taken

Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Support